Skip to Content
Merck
  • Phenol red inhibits chondrogenic differentiation and affects osteogenic differentiation of human mesenchymal stem cells in vitro.

Phenol red inhibits chondrogenic differentiation and affects osteogenic differentiation of human mesenchymal stem cells in vitro.

Stem cell reviews (2012-11-09)
Helle Lysdahl, Anette Baatrup, Anna Bay Nielsen, Casper Bindzus Foldager, Cody Bünger
ABSTRACT

The purpose with this study was to investigate the effect of phenol red (PR) on chondrogenic and osteogenic differentiation of human mesenchymal stem cells (hMSCs). hMSCs were differentiated into chondrogenic and osteogenic directions in DMEM with and without PR for 2, 7, 14, 21, and 28 days. Gene expression of chondrogenic and osteogenic markers were analyzed by RT-qPCR. The presence of proteoglycans was visualized histologically. Osteogenic matrix deposition and mineralization were examined measuring the alkaline phophatase activity and calcium deposition. During chondrogenic differentiation PR decreased sox9, collagen type 2, aggrecan on day 14 and 21 (P < 0.05), and proteoglycan synthesis on day 21 and 28. Collagen type 10 was decreased on day 21 (P < 0.05). During osteogenic differentiation PR increased alkaline phosphatase on day 7 while decreased on day 21 (P < 0.05). PR increased collagen type 1 on day 7, 14, and day 21 (P < 0.05). The alkaline phosphatase activity was increased after 2, 7, and 14 days (P < 0.05). The deposition of calcium was decreased on day 21 (P < 0.05). Our results indicate that PR should be removed from the culture media when differentiating hMSCs into chondrogenic and osteogenic directions due to the effects on these differentiation pathways.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Phenol Red, ACS reagent
Sigma-Aldrich
Phenol Red, powder, BioReagent, suitable for cell culture