Skip to Content
Merck
  • Macrophages sequester clofazimine in an intracellular liquid crystal-like supramolecular organization.

Macrophages sequester clofazimine in an intracellular liquid crystal-like supramolecular organization.

PloS one (2012-10-17)
Jason Baik, Gus R Rosania
ABSTRACT

Clofazimine is a poorly-soluble but orally-bioavailable small molecule drug that massively accumulates in macrophages when administered over prolonged periods of time. To determine whether crystal-like drug inclusions (CLDIs) that form in subcellular spaces correspond to pure clofazimine crystals, macrophages of clofazimine-fed mice were elicited with an intraperitoneal thioglycollate injection. Inside these cells, CLDIs appeared uniform in size and shape, but were sensitive to illumination. Once removed from cells, CLDIs were unstable. Unlike pure clofazimine crystals, isolated CLDIs placed in distilled water burst into small birefringent globules, which aggregated into larger clusters. Also unlike pure clofazimine crystals, CLDIs fragmented when heated, and disintegrated in alkaline media. In contrast to all other organelles, CLDIs were relatively resistant to sonication and trypsin digestion, which facilitated their biochemical isolation. The powder x-ray diffraction pattern obtained from isolated CLDIs was consistent with the diffraction pattern of liquid crystals and inconsistent with the expected molecular diffraction pattern of solid, three dimensional crystals. Observed with the transmission electron microscope (TEM), CLDIs were bounded by an atypical double-layered membrane, approximately 20 nanometers thick. CLDIs were polymorphic, but generally exhibited an internal multilayered organization, comprised of stacks of membranes 5 to 15 nanometers thick. Deep-etch, freeze-fracture electron microscopy of unfixed snap-frozen tissue samples confirmed this supramolecular organization. These results suggest that clofazimine accumulates in macrophages by forming a membrane-bound, multilayered, liquid crystal-like, semi-synthetic cytoplasmic structure.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-von Willebrand Factor Antibody, Chemicon®, from rabbit