Skip to Content
Merck
  • Ketogenic diet administration later in life improves memory by modifying the synaptic cortical proteome via the PKA signaling pathway in aging mice.

Ketogenic diet administration later in life improves memory by modifying the synaptic cortical proteome via the PKA signaling pathway in aging mice.

Cell reports. Medicine (2024-06-07)
Diego Acuña-Catalán, Samah Shah, Cameron Wehrfritz, Mitsunori Nomura, Alejandro Acevedo, Cristina Olmos, Gabriel Quiroz, Hernán Huerta, Joanna Bons, Estibaliz Ampuero, Ursula Wyneken, Magdalena Sanhueza, Felipe Arancibia, Darwin Contreras, Julio César Cárdenas, Bernardo Morales, Birgit Schilling, John C Newman, Christian González-Billault
ABSTRACT

Aging compromises brain function leading to cognitive decline. A cyclic ketogenic diet (KD) improves memory in aged mice after long-term administration; however, short-term effects later in life and the molecular mechanisms that govern such changes remain unclear. Here, we explore the impact of a short-term KD treatment starting at elderly stage on brain function of aged mice. Behavioral testing and long-term potentiation (LTP) recordings reveal that KD improves working memory and hippocampal LTP. Furthermore, the synaptosome proteome of aged mice fed a KD long-term evidence changes predominantly at the presynaptic compartment associated to the protein kinase A (PKA) signaling pathway. These findings were corroborated in vivo by western blot analysis, with high BDNF abundance and PKA substrate phosphorylation. Overall, we show that a KD modifies brain function even when it is administered later in life and recapitulates molecular features of long-term administration, including the PKA signaling pathway, thus promoting synaptic plasticity at advanced age.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Glyceraldehyde-3-Phosphate Dehydrogenase Antibody, clone 6C5, clone 6C5, Chemicon®, from mouse