Skip to Content
Merck

HAPLN1 potentiates peritoneal metastasis in pancreatic cancer.

Nature communications (2023-04-25)
Lena Wiedmann, Francesca De Angelis Rigotti, Nuria Vaquero-Siguero, Elisa Donato, Elisa Espinet, Iris Moll, Elisenda Alsina-Sanchis, Hanibal Bohnenberger, Elena Fernandez-Florido, Ronja Mülfarth, Margherita Vacca, Jennifer Gerwing, Lena-Christin Conradi, Philipp Ströbel, Andreas Trumpp, Carolin Mogler, Andreas Fischer, Juan Rodriguez-Vita
ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) frequently metastasizes into the peritoneum, which contributes to poor prognosis. Metastatic spreading is promoted by cancer cell plasticity, yet its regulation by the microenvironment is incompletely understood. Here, we show that the presence of hyaluronan and proteoglycan link protein-1 (HAPLN1) in the extracellular matrix enhances tumor cell plasticity and PDAC metastasis. Bioinformatic analysis showed that HAPLN1 expression is enriched in the basal PDAC subtype and associated with worse overall patient survival. In a mouse model for peritoneal carcinomatosis, HAPLN1-induced immunomodulation favors a more permissive microenvironment, which accelerates the peritoneal spread of tumor cells. Mechanistically, HAPLN1, via upregulation of tumor necrosis factor receptor 2 (TNFR2), promotes TNF-mediated upregulation of Hyaluronan (HA) production, facilitating EMT, stemness, invasion and immunomodulation. Extracellular HAPLN1 modifies cancer cells and fibroblasts, rendering them more immunomodulatory. As such, we identify HAPLN1 as a prognostic marker and as a driver for peritoneal metastasis in PDAC.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Monoclonal Anti-β-Actin antibody produced in mouse, clone AC-15, ascites fluid