Skip to Content
Merck
  • Dynamin-2 regulates microtubule stability via an endocytosis-independent mechanism.

Dynamin-2 regulates microtubule stability via an endocytosis-independent mechanism.

Cytoskeleton (Hoboken, N.J.) (2022-09-03)
Runzhao Guo, Ryuji Fujito, Akira Nagasaki, Misako Okumura, Takahiro Chihara, Kozue Hamao
ABSTRACT

Microtubule stability and dynamics regulations are essential for vital cellular processes, such as microtubule-dependent axonal transport. Dynamin is involved in many membrane fission events, such as clathrin-mediated endocytosis. The ubiquitously expressed dynamin-2 has been reported to regulate microtubule stability. However, the underlying molecular mechanisms remain unclear. This study aimed to investigate the roles of intrinsic properties of dynamin-2 on microtubule regulation by rescue experiments. A heterozygous DNM2 mutation in HeLa cells was generated, and an increase in the level of stabilized microtubules in these heterozygous cells was observed. The expression of wild-type dynamin-2 in heterozygous cells reduced stabilized microtubules. Conversely, the expression of self-assembly-defective mutants of dynamin-2 in the heterozygous cells failed to decrease stabilized microtubules. This indicated that the self-assembling ability of dynamin-2 is necessary for regulating microtubule stability. Moreover, the heterozygous cells expressing the GTPase-defective dynamin-2 mutant, K44A, reduced microtubule stabilization, similar to the cells expressing wild-type dynamin-2, suggesting that GTPase activity of dynamin-2 is not essential for regulating microtubule stability. These results showed that the mechanism of microtubule regulation by dynamin-2 is diverse from that of endocytosis.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Rabbit Anti-Goat IgG Antibody, Alkaline Phosphatase conjugate, Chemicon®, from rabbit