Skip to Content
Merck
  • Comparison of serum and plasma as a source of blood extracellular vesicles: Increased levels of platelet-derived particles in serum extracellular vesicle fractions alter content profiles from plasma extracellular vesicle fractions.

Comparison of serum and plasma as a source of blood extracellular vesicles: Increased levels of platelet-derived particles in serum extracellular vesicle fractions alter content profiles from plasma extracellular vesicle fractions.

PloS one (2022-06-25)
Xiaoman Zhang, Toshihide Takeuchi, Akiko Takeda, Hideki Mochizuki, Yoshitaka Nagai
ABSTRACT

Extracellular vesicles (EVs) have attracted much attention as potential diagnostic biomarkers for human diseases. Although both plasma and serum are utilized as a source of blood EVs, it remains unclear whether, how and to what extent the choice of plasma and serum affects the experimental results. To address this issue, in this study, we performed comprehensive characterization of EV fractions derived from plasma and serum, and investigated the differences between these blood EVs. We demonstrated by nanoparticle tracking analysis that EV fractions derived from serum contain more particles than those from plasma of mice. Proteomic analysis demonstrated that platelet-associated proteins are selectively enriched in serum EV fractions from both mice and humans. A literature review of proteomic data of human blood EVs reported by other groups further confirmed that selective enrichment of platelet-associated proteins is commonly observed in serum EVs, and confers different proteome profiles to plasma EVs. Our data provide experimental evidence that EV fractions derived from serum generally contain additional EVs that are released from platelets, which may qualitatively and quantitatively alter EV profiles when using serum as a source of blood EVs.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-CD9 Antibody, clone MM2/57, clone MM2/57, Chemicon®, from mouse