Skip to Content
Merck
  • Operational stability of enzymes. Acylase-catalyzed resolution of N-acetyl amino acids to enantiomerically pure L-amino acids.

Operational stability of enzymes. Acylase-catalyzed resolution of N-acetyl amino acids to enantiomerically pure L-amino acids.

Annals of the New York Academy of Sciences (1992-11-30)
A S Bommarius, K Drauz, H Klenk, C Wandrey
ABSTRACT

The method of measuring enzyme deactivation by monitoring necessary addition of fresh enzyme to keep a constant degree of conversion in a CSTR at constant [E] x tau, the product of concentration of active enzyme [E] and residence time tau, was successfully applied to acylase I from porcine kidney and Aspergillus oryzae fungus. Fungal enzyme was found to be more stable than kidney enzyme. Activation by both Co2+ and Zn2+ ions also yielded increased operational enzyme stability: Co2+ and Zn2+ are better stabilizers than activators. Mg2+ and Ca2+ are found to be neither activators nor stabilizers. Fungal acylase partially deactivated by exposition to a metal-free medium in the CSTR was reactivated by addition of Zn2+, demonstrating that loss of Zn2+ from the enzyme molecule is mainly responsible for deactivation in a continuous reactor.