Skip to Content
Merck
  • Impairment of neuronal mitochondrial function by L-DOPA in the absence of oxygen-dependent auto-oxidation and oxidative cell damage.

Impairment of neuronal mitochondrial function by L-DOPA in the absence of oxygen-dependent auto-oxidation and oxidative cell damage.

Cell death discovery (2021-07-07)
Philipp Hörmann, Sylvie Delcambre, Jasmin Hanke, Robert Geffers, Marcel Leist, Karsten Hiller
ABSTRACT

L-3,4-Dihydroxyphenylalanin (L-DOPA or levodopa) is currently the most used drug to treat symptoms of Parkinson's disease (PD). After crossing the blood-brain barrier, it is enzymatically converted to dopamine by neuronal cells and restores depleted endogenous neurotransmitter levels. L-DOPA is prone to auto-oxidation and reactive intermediates of its degradation including reactive oxygen species (ROS) have been implicated in cellular damage. In this study, we investigated how oxygen tension effects L-DOPA stability. We applied oxygen tensions comparable to those in the mammalian brain and demonstrated that 2% oxygen almost completely stopped its auto-oxidation. L-DOPA even exerted a ROS scavenging function. Further mechanistic analysis indicated that L-DOPA reprogrammed mitochondrial metabolism and reduced oxidative phosphorylation, depolarized the mitochondrial membrane, induced reductive glutamine metabolism, and depleted the NADH pool. These results shed new light on the cellular effects of L-DOPA and its neuro-toxicity under physiological oxygen levels that are very distinct to normoxic in vitro conditions.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Resazurin sodium salt, powder, BioReagent
Sigma-Aldrich
L-Glutamine solution, 200 mM, solution, sterile-filtered, BioXtra, suitable for cell culture
Sigma-Aldrich
2′,7′-Dichlorodihydrofluorescein diacetate, ≥97%
Sigma-Aldrich
L-Ascorbic acid, powder, suitable for cell culture, γ-irradiated
Sigma-Aldrich
Acetic acid, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Fibronectin bovine plasma, solution, sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
L-Glutathione reduced, ≥98.0%
Sigma-Aldrich
3,4-Dihydroxy-L-phenylalanine, ≥98% (TLC)