Skip to Content
Merck
  • Ethacrynic acid, a loop diuretic, suppresses epithelial-mesenchymal transition of A549 lung cancer cells via blocking of NDP-induced WNT signaling.

Ethacrynic acid, a loop diuretic, suppresses epithelial-mesenchymal transition of A549 lung cancer cells via blocking of NDP-induced WNT signaling.

Biochemical pharmacology (2020-11-16)
Lu Yu, Hyun Ji Kim, Mi Kyung Park, Hyun Jung Byun, Eun Ji Kim, Boram Kim, Minh Tuan Nguyen, Ji Hyun Kim, Gyeoung Jin Kang, Ho Lee, Soo Youl Kim, Seung Bae Rho, Chang Hoon Lee
ABSTRACT

Lung cancer is one of the leading causes of death in cancer patients. Epithelial-mesenchymal transition (EMT) plays an important role in lung cancer progression. Therefore, for lung cancer treatment, it is crucial to find substances that inhibit EMT. Ethacrynic acid (ECA) is a diuretic that inhibits cellular ion flux and exerts anticancer effects. However, the effects of ECA on EMT in lung cancer remain unclear. We examined the effects of ECA on sphingosylphosphorylcholine (SPC) or TGF-β1-induced EMT process in A549 and H1299 cells via reverse transcription polymerase chain reaction and Western blotting. We found that ECA inhibited SPC-induced EMT and SPC-induced WNT signalling in EMT. We observed that SPC induces the expression of NDP [Norrie disease protein] and WNT-2, whereas ECA suppressed their expression. SPC-induced WNT activation, EMT, migration, and invasion were suppressed by NDP small-interfering RNA (siNDP), but NDP overexpression (pNDP) enhanced these events in A549 and H1299 cells. Accordingly, NDP expression may influence lung cancer prognosis. In summary, our results revealed that ECA inhibited SPC or TGF-β1-induced EMT in A549 and H1299 lung cancer cells by downregulating NDP expression and inhibiting WNT activation. Therefore, ECA might be a new drug candidate for lung cancer treatment.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Triton X-100, for molecular biology
Sigma-Aldrich
Triton X-100, laboratory grade