Skip to Content
Merck
  • Combined Cutaneous Therapy Using Biocompatible Metal-Organic Frameworks.

Combined Cutaneous Therapy Using Biocompatible Metal-Organic Frameworks.

Nanomaterials (Basel, Switzerland) (2020-12-02)
Seyed Dariush Taherzade, Sara Rojas, Janet Soleimannejad, Patricia Horcajada
ABSTRACT

Combined therapies emerge as an interesting tool to overcome limitations of traditional pharmacological treatments (efficiency, side effects). Among other materials, metal-organic frameworks (MOFs) offer versatilities for the accommodation of multiple and complementary active pharmaceutical ingredients (APIs): accessible large porosity, availability of functionalization sites, and biocompatibility. Here, we propose topical patches based on water-stable and biosafe Fe carboxylate MOFs (MIL-100 and MIL-127), the biopolymer polyvinyl alcohol (PVA) and two co-encapsulated drugs used in skin disorders (azelaic acid (AzA) as antibiotic, and nicotinamide (Nic) as anti-inflammatory), in order to develop an advanced cutaneous combined therapy. Exceptional MOF drug contents were reached (total amount 77.4 and 48.1 wt.% for MIL-100 and MIL-127, respectively), while an almost complete release of both drugs was achieved after 24 h, adapted to cutaneous delivery. The prepared cutaneous PVA-MOF formulations are safe and maintain the high drug-loading capacity (total drug content of 38.8 and 24.2 wt.% for MIL-100 and MIL-127, respectively), while allowing a controlled delivery of their cargoes, permeating through the skin to the active target sites. The total amount of drug retained or diffused through the skin is within the range (Nic), or even better (AzA) than commercial formulations. The presented results make these drug combined formulations promising candidates for new cutaneous devices for skin treatment.