Skip to Content
Merck
  • A high content, phenotypic 'scar-in-a-jar' assay for rapid quantification of collagen fibrillogenesis using disease-derived pulmonary fibroblasts.

A high content, phenotypic 'scar-in-a-jar' assay for rapid quantification of collagen fibrillogenesis using disease-derived pulmonary fibroblasts.

BMC biomedical engineering (2019-06-28)
Robert B Good, Jessica D Eley, Elaine Gower, Genevieve Butt, Andrew D Blanchard, Andrew J Fisher, Carmel B Nanthakumar
ABSTRACT

Excessive extracellular matrix (ECM) deposition is a hallmark feature in fibrosis and tissue remodelling diseases. Typically, mesenchymal cells will produce collagens under standard 2D cell culture conditions, however these do not assemble into fibrils. Existing assays for measuring ECM production are often low throughput and not disease relevant. Here we describe a robust, high content, pseudo-3D phenotypic assay to quantify mature fibrillar collagen deposition which is both physiologically relevant and amenable to high throughput compound screening. Using pulmonary fibroblasts derived from patients with idiopathic pulmonary fibrosis (IPF), we developed the 'scar-in-a-jar' assay into a medium-throughput phenotypic assay to robustly quantify collagen type I deposition and other extracellular matrix (ECM) proteins over 72 h. This assay utilises macromolecular crowding to induce an excluded volume effect and enhance enzyme activity, which in combination with TGF-β1 stimulation significantly accelerates ECM production. Collagen type I is upregulated approximately 5-fold with a negligible effect on cell number. We demonstrate the robustness of the assay achieving a Z prime of approximately 0.5, and % coefficient of variance (CV) of < 5 for the assay controls SB-525334 (ALK5 inhibitor) and CZ415 (mTOR inhibitor). This assay has been used to confirm the potency of a number of potential anti-fibrotic agents. Active compounds from the 'scar-in-a-jar' assay can be further validated for other markers of ECM deposition and fibroblast activation such as collagen type IV and α-smooth muscle actin exhibiting a 4-fold and 3-fold assay window respectively. In conclusion, we have developed 'scar -in-a-jar is' into a robust disease-relevant medium-throughput in vitro assay to accurately quantify ECM deposition. This assay may enable iterative compound profiling for IPF and other fibroproliferative and tissue remodelling diseases.