Skip to Content
Merck
  • Phase Inversion-Based Technique for Fabricating Bijels and Bijels-Derived Structures with Tunable Microstructures.

Phase Inversion-Based Technique for Fabricating Bijels and Bijels-Derived Structures with Tunable Microstructures.

Langmuir : the ACS journal of surfaces and colloids (2020-11-26)
Junzhi Li, Haoran Sun, Min Wang
ABSTRACT

Bicontinuous interfacially jammed emulsion gels ("bijels") are a new class of soft matter containing two interpenetrating continuous phases. They have great potential for applications in many areas. However, difficulties in fabricating bijels and controlling structural features of interest have posed severe barriers to their wide applications. In this study, a phase inversion-based technique was developed for fabricating bijels and bijels-derived structures. The effects of varying the composition of casting solutions for the fabrication of bijels on the porosity, oil-to-water percentage, and domain size of bijels were investigated. Composite bijels prepared from two organic monomers were also made, demonstrating the flexibility of the phase inversion-based technique for the fabrication of bijels. Interestingly, the incorporation of a second monomer into the casting solution also affected the porosity and domain size of bijels formed, which may provide a new strategy for the controlled fabrication of bijels. Doxorubicin hydrochloride (DOX, as a model drug)-loaded bijels-derived hybrid hydrogels comprising two continuous phases were successfully made, with one phase being cross-linked alginate that carried the drug. Controlled release of DOX from the bijels-derived structures could be achieved. In vitro degradation study indicated that cross-linking of alginate in bijels-derived hybrid hydrogels controlled alginate degradation, thereby affecting the DOX release behavior. Our current work has provided a facile and reproducible protocol for the controlled fabrication of bijels and bijels-derived structures, which facilitates expanding their applications in the biomedical field.