Skip to Content
Merck
  • A decrease in NAMPT activity impairs basal PARP-1 activity in cytidine deaminase deficient-cells, independently of NAD.

A decrease in NAMPT activity impairs basal PARP-1 activity in cytidine deaminase deficient-cells, independently of NAD.

Scientific reports (2020-08-19)
Sandra Cunha Silveira, Géraldine Buhagiar-Labarchède, Rosine Onclercq-Delic, Simon Gemble, Elias Bou Samra, Hamza Mameri, Patricia Duchambon, Christelle Machon, Jérôme Guitton, Mounira Amor-Guéret
ABSTRACT

Cytidine deaminase (CDA) deficiency causes pyrimidine pool disequilibrium. We previously reported that the excess cellular dC and dCTP resulting from CDA deficiency jeopardizes genome stability, decreasing basal poly(ADP-ribose) polymerase 1 (PARP-1) activity and increasing ultrafine anaphase bridge (UFB) formation. Here, we investigated the mechanism underlying the decrease in PARP-1 activity in CDA-deficient cells. PARP-1 activity is dependent on intracellular NAD+ concentration. We therefore hypothesized that defects of the NAD+ salvage pathway might result in decreases in PARP-1 activity. We found that the inhibition or depletion of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD+ salvage biosynthesis pathway, mimicked CDA deficiency, resulting in a decrease in basal PARP-1 activity, regardless of NAD+ levels. Furthermore, the expression of exogenous wild-type NAMPT fully restored basal PARP-1 activity and prevented the increase in UFB frequency in CDA-deficient cells. No such effect was observed with the catalytic mutant. Our findings demonstrate that (1) the inhibition of NAMPT activity in CDA-proficient cells lowers basal PARP-1 activity, and (2) the expression of exogenous wild-type NAMPT, but not of the catalytic mutant, fully restores basal PARP-1 activity in CDA-deficient cells; these results strongly suggest that basal PARP-1 activity in CDA-deficient cells decreases due to a reduction of NAMPT activity.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Mouse IgG (Fab specific)–Peroxidase antibody produced in goat, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
Anti-Rabbit IgG (whole molecule)–Peroxidase antibody produced in goat, IgG fraction of antiserum, buffered aqueous solution