Skip to Content
Merck
  • Reciprocal H3.3 gene editing identifies K27M and G34R mechanisms in pediatric glioma including NOTCH signaling.

Reciprocal H3.3 gene editing identifies K27M and G34R mechanisms in pediatric glioma including NOTCH signaling.

Communications biology (2020-07-11)
Kuang-Yui Chen, Kelly Bush, Rachel Herndon Klein, Vanessa Cervantes, Nichole Lewis, Aasim Naqvi, Angel M Carcaboso, Mirna Lechpammer, Paul S Knoepfler
ABSTRACT

Histone H3.3 mutations are a hallmark of pediatric gliomas, but their core oncogenic mechanisms are not well-defined. To identify major effectors, we used CRISPR-Cas9 to introduce H3.3K27M and G34R mutations into previously H3.3-wildtype brain cells, while in parallel reverting the mutations in glioma cells back to wildtype. ChIP-seq analysis broadly linked K27M to altered H3K27me3 activity including within super-enhancers, which exhibited perturbed transcriptional function. This was largely independent of H3.3 DNA binding. The K27M and G34R mutations induced several of the same pathways suggesting key shared oncogenic mechanisms including activation of neurogenesis and NOTCH pathway genes. H3.3 mutant gliomas are also particularly sensitive to NOTCH pathway gene knockdown and drug inhibition, reducing their viability in culture. Reciprocal editing of cells generally produced reciprocal effects on tumorgenicity in xenograft assays. Overall, our findings define common and distinct K27M and G34R oncogenic mechanisms, including potentially targetable pathways.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Histone H3 Antibody, clone 6.6.2, clone 6.6.2, Upstate®, from mouse
Sigma-Aldrich
Anti-Histone H4 Antibody, pan, rabbit monoclonal, culture supernatant, clone 62-141-13, Upstate®
Sigma-Aldrich
Anti-Histone H3.3 Antibody, K27M mutant, from rabbit, purified by affinity chromatography