Skip to Content
Merck
  • Differentiation Drives Widespread Rewiring of the Neural Stem Cell Chaperone Network.

Differentiation Drives Widespread Rewiring of the Neural Stem Cell Chaperone Network.

Molecular cell (2020-04-09)
Willianne I M Vonk, T Kelly Rainbolt, Patrick T Dolan, Ashley E Webb, Anne Brunet, Judith Frydman
ABSTRACT

Neural stem and progenitor cells (NSPCs) are critical for continued cellular replacement in the adult brain. Lifelong maintenance of a functional NSPC pool necessitates stringent mechanisms to preserve a pristine proteome. We find that the NSPC chaperone network robustly maintains misfolded protein solubility and stress resilience through high levels of the ATP-dependent chaperonin TRiC/CCT. Strikingly, NSPC differentiation rewires the cellular chaperone network, reducing TRiC/CCT levels and inducing those of the ATP-independent small heat shock proteins (sHSPs). This switches the proteostasis strategy in neural progeny cells to promote sequestration of misfolded proteins into protective inclusions. The chaperone network of NSPCs is more effective than that of differentiated cells, leading to improved management of proteotoxic stress and amyloidogenic proteins. However, NSPC proteostasis is impaired by brain aging. The less efficient chaperone network of differentiated neural progeny may contribute to their enhanced susceptibility to neurodegenerative diseases characterized by aberrant protein misfolding and aggregation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Monoclonal Anti-β-Actin antibody produced in mouse, clone AC-15, ascites fluid
Sigma-Aldrich
Anti-Pax6 Antibody, clone AD1.5, ascites fluid, clone AD1.5, Chemicon®
Sigma-Aldrich
Anti-Tbr2 Antibody, from chicken, purified by affinity chromatography
Sigma-Aldrich
Mitomycin C from Streptomyces caespitosus, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Anti-NeuN Antibody, clone A60, clone A60, Chemicon®, from mouse
Sigma-Aldrich
Anti-Galactocerebroside Antibody, clone mGalC, clone mGalC, Chemicon®, from mouse