Skip to Content
Merck
  • Fine scale differences within the vagal neural crest for enteric nervous system formation.

Fine scale differences within the vagal neural crest for enteric nervous system formation.

Developmental biology (2018-11-19)
Johanna E Simkin, Dongcheng Zhang, Lincon A Stamp, Donald F Newgreen
ABSTRACT

The enteric nervous system is mostly derived from vagal neural crest (NC) cells adjacent to somites (s)1-7. We used in ovo focal fluorescent vital dyes and focal electroporation of fluorophore-encoding plasmids in quail embryos to investigate NC cell migration to the foregut initially and later throughout the entire gut. NC cells of different somite-level origins were largely separate until reaching the foregut at about QE2.5, when all routes converged. By QE3.5, NC cells of different somite-levels became mixed, although s1-s2 NC cells were mainly confined to rostral foregut. Mid-vagal NC-derived cells (s3 and s4 level) arrived earliest at the foregut, and occurred in greatest number. By QE6.5 ENS was present from foregut to hindgut. Mid-vagal NC-derived cells occurred in greatest numbers from foregut to distal hindgut. NC-derived cells of s2, s5, and s6 levels were fewer and were widely distributed but were never observed in the distal hindgut. Rostro-vagal (s1) and caudo-vagal (s7) levels were few and restricted to the foregut. Single somite levels of quail neural tube/NC from s1 to s8 were combined with chick aneural ChE4.5 midgut and hindgut and the ensemble was grown on the chorio-allantoic membrane for 6 days. This tests ENS-forming competence in the absence of intra-segmental competition between NC cells, of differential influences of segmental paraxial tissues, and of positional advantage. All vagal NC-levels, but not s8 level, furnished enteric plexuses in the recipient gut, but the density of both ENS cells in total and neurons was highest from mid-vagal level donors, as was the length colonised. We conclude that the fate and competence for ENS formation of vagal NC sub-levels is not uniform over the vagal level but is biased to favour mid-vagal levels. Overviewing this and prior studies suggests the vagal region is, as in its traditional sense, a natural unit but with complex sub-divisions.