Skip to Content
Merck
  • A study of soluble HLA-G1 protecting porcine endothelial cells against human natural killer cell-mediated cytotoxicity.

A study of soluble HLA-G1 protecting porcine endothelial cells against human natural killer cell-mediated cytotoxicity.

Transplantation proceedings (2006-12-19)
M H Zeng, C Y Fang, S S Wang, M Zhu, L Xie, R Li, L Wang, X W Wu, S Chen
ABSTRACT

Human natural killer (NK) cells, which can mediate direct lysis of porcine endothelial cells, play an important role in xenograft rejection. HLA-G, which is a critical molecule in maintaining maternal immune tolerance of semi-allogenic fetus, is able to protect susceptible target cells from lysis induced by NK cells. In this study, we investigated whether soluble HLA-G1 (sHLA-G1) protected porcine xenogeneic cells against human NK cell-mediated lysis. The human sHLA-G1 genomic DNA (pcDNA3-sHLA-G1) was transfected into a B lymphoblastoid cell line 721.221 (LCL721.221) by nucleofector. The sHLA-G1 expression of the transfected LCL721.221 cells was identified by RT-PCR and Dot-ELISA. The sHLA-G1 protein was purified by affinity chromatography on anti-HLA-ImAb W6/32 coupled to cyanogen-bromide-activated Sepharose 4B from culture supernates of transfectants. Various concentrations of sHLA-G(1) protein (0, 2, 4, 6, or 8 microg/mL) were added to a NK cell-mediated xenogenic cell lysis system with either NK92 cells or fresh human peripheral blood mononuclear cells (PBMCs) cocultured with the porcine endothelial cells line. A LDH release assay was used to evaluate NK cell-mediated cytotoxicity. sHLA-G1 provided significant protection of porcine endothelial cells against human NK-mediated cytotoxicity in a dose-dependent manner. The rates of NK92 cell-mediated cytotoxicity were reduced to 83.4 +/- 5.7% (2 microg/mL), 56.6 +/- 9.3% (4 microg/mL), 39.3 +/- 10.2% (6 microg/mL), and 31.2 +/- 4.9% (8 microg/mL) versus 96.9 +/- 3.0% in the control group (P < .01). Similarly, adding 6 microg/mL sHLA-G1 reduced the mean rate of PBMC-mediated cytotoxicity (n = 4) to 5.8 +/- 1.6% from 23.9 +/- 1.3% in the control group (P < .01). These results indicated that sHLA-G1 protected xenogeneic porcine endothelial cells against attack by human NK cells, thus providing a new approach to overcome NK-mediated immunity to xenografts.