Skip to Content
Merck
  • Dissolved Black Carbon as an Efficient Sensitizer in the Photochemical Transformation of 17β-Estradiol in Aqueous Solution.

Dissolved Black Carbon as an Efficient Sensitizer in the Photochemical Transformation of 17β-Estradiol in Aqueous Solution.

Environmental science & technology (2018-08-23)
Zhicheng Zhou, Beining Chen, Xiaolei Qu, Heyun Fu, Dongqiang Zhu
ABSTRACT

Dissolved black carbon (DBC) is an important component of the dissolved organic matter (DOM) pool. Nonetheless, little is known about its role in the photochemical processes of organic contaminants. This study investigated the effect of DBC on the phototransformation of 17β-estradiol in aqueous solutions under simulated sunlight. Four well-studied dissolved humic substances (DHS) were included as comparisons. DBC acted as a very effective sensitizer to facilitate the phototransformation of 17β-estradiol. The apparent quantum yield for 17β-estradiol phototransformation mediated by DBC was approximately six times higher than that by DHS at the same carbon concentration. Quenching experiments suggested that direct reaction with triplet-excited state DBC (3DBC*) was the predominant pathway of 17β-estradiol phototransformation. The higher mediation efficiency of DBC than DHS is likely due to the higher contents of aromatic groups and smaller molecular sizes, which facilitated the generation of 3DBC*. The apparent quantum yield of triplet-excited states production for DBC was 4-8 times higher than that for DHS. The results suggest that 3DBC* may have a considerable contribution to the overall photoreactivity of triplet-excited state DOM in aquatic systems. Our findings also imply that DBC can play an important role in the phototransformation of organic contaminants in the environments.