Skip to Content
Merck
  • Morphometric assessment of toxicant induced neuronal degeneration in full and restricted contact co-cultures of embryonic cortical rat neurons and astrocytes: using m-Dinitrobezene as a model neurotoxicant.

Morphometric assessment of toxicant induced neuronal degeneration in full and restricted contact co-cultures of embryonic cortical rat neurons and astrocytes: using m-Dinitrobezene as a model neurotoxicant.

Toxicology in vitro : an international journal published in association with BIBRA (2015-01-03)
Angela R Dixon, Martin A Philbert
ABSTRACT

With m-Dinitrobenzene (m-DNB) as a selected model neurotoxicant, we demonstrate how to assess neurotoxicity, using morphology based measurement of neurite degeneration, in a conventional "full-contact" and a modern "restricted-contact" co-culture of rat cortical neurons and astrocytes. In the "full-contact" co-culture, neurons and astrocytes in complete physical contact are "globally" exposed to m-DNB. A newly emergent "restricted-contact" co-culture is attained with a microfluidic device that polarizes neuron somas and neurites into separate compartments, and the neurite compartment is "selectively" exposed to m-DNB. Morphometric analysis of the neuronal area revealed that m-DNB exposure produced no significant change in mean neuronal cell area in "full-contact" co-cultures, whereas a significant decrease was observed for neuron monocultures. Neurite elaboration into a neurite exclusive compartment in a compartmentalized microfluidic device, for both monocultures (no astrocytes) and "restricted" co-cultures (astrocytes touching neurites), decreased with exposure to increasing concentrations of m-DNB, but the average neurite area was higher in co-cultures. By using co-culture systems that more closely approach biological and architectural complexities, and the directionality of exposure found in the brain, this study provides a methodological foundation for unraveling the role of physical contact between astrocytes and neurons in mitigating the toxic effects of chemicals such as m-DNB.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Tubulin β-III Antibody, clone TU-20, Alexa Fluor488 Conjugated, clone TU-20, from mouse, ALEXA FLUOR 488
Sigma-Aldrich
Anti-Tubulin β-III Antibody, clone TU-20, Alexa Fluor555 Conjugate, clone TU-20, from mouse, ALEXA FLUOR 555
Sigma-Aldrich
Anti-Glial Fibrillary Acidic Protein Antibody, clone GA5, Alexa Fluor 488, clone GA5, Chemicon®, from mouse
Sigma-Aldrich
Anti-GFAP Antibody, Cy3 Conjugate, from mouse, CY3 conjugate