Saltar al contenido
Merck

Lactate distribution in culture medium of human myometrial biopsies incubated under different conditions.

American journal of physiology. Endocrinology and metabolism (2009-10-15)
Helena Akerud, Gunnar Ronquist, Eva Wiberg-Itzel
RESUMEN

It is generally believed that a relationship exists between muscle fatigue and intracellular accumulation of lactate. This reasoning is relevant to obstetrical issues. Myocytes in uterus work together during labor, and the contractions need to be strong and synchronized for a child to be delivered. At labor dystocia, the progress of labor becomes slow or arrested after a normal beginning. It has been described that, during labor dystocia, when the force of the contractions is low, the uterus is under hypoxia, and anaerobic conditions with high levels of lactate in amniotic fluid dominate. The purpose of this study was to examine whether myometrial cells are involved in the production of lactate in amniotic fluid and whether there are differences in production and distribution of lactate in cells incubated under aerobic and anaerobic conditions. We also wanted to elucidate the involvement of specific membrane-bound lactate carriers. Women undergoing elective caesarean section were included. Myometrial biopsies from uteri were collected and subjected to either immunohistochemistry to identify lactate carriers or in vitro experiments to analyze production of lactate. The presence of lactate carriers named monocarboxylate transporters 1 and 4 was verified. Myometrial cells produced lactate extracellularly, and the lactate carriers operated differently under anaerobic and aerobic conditions; while being mainly unidirectional under anaerobic conditions, they became bidirectional under aerobic conditions. Human myometrial cells produced and delivered lactate to the extracellular medium under both anaerobic and aerobic conditions. The delivery was mediated by lactate carriers.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Sodium iodoacetate, ≥98%, BioUltra