Saltar al contenido
Merck

The p53 tumor suppressor protein protects against chemotherapeutic stress and apoptosis in human medulloblastoma cells.

Aging (2015-11-06)
Sarah Waye, Aisha Naeem, Muhammad Umer Choudhry, Erika Parasido, Lucas Tricoli, Angiela Sivakumar, John P Mikhaiel, Venkata Yenugonda, Olga C Rodriguez, Sana D Karam, Brian R Rood, Maria Laura Avantaggiati, Chris Albanese
RESUMEN

Medulloblastoma (MB), a primitive neuroectodermal tumor, is the most common malignant childhood brain tumor and remains incurable in about a third of patients. Currently, survivors carry a significant burden of late treatment effects. The p53 tumor suppressor protein plays a crucial role in influencing cell survival in response to cellular stress and while the p53 pathway is considered a key determinant of anti-tumor responses in many tumors, its role in cell survival in MB is much less well defined. Herein, we report that the experimental drug VMY-1-103 acts through induction of a partial DNA damage-like response as well induction of non-survival autophagy. Surprisingly, the genetic or chemical silencing of p53 significantly enhanced the cytotoxic effects of both VMY and the DNA damaging drug, doxorubicin. The inhibition of p53 in the presence of VMY revealed increased late stage apoptosis, increased DNA fragmentation and increased expression of genes involved in apoptosis, including CAPN12 and TRPM8, p63, p73, BIK, EndoG, CIDEB, P27Kip1 and P21cip1. These data provide the groundwork for additional studies on VMY as a therapeutic drug and support further investigations into the intriguing possibility that targeting p53 function may be an effective means of enhancing clinical outcomes in MB.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
3-Methyladenine, autophagy inhibitor
Sigma-Aldrich
Anti-p53 Antibody, clone BP53-12, clone BP53-12, Upstate®, from mouse