Saltar al contenido
Merck

Long chain fatty Acyl-CoA synthetase 4 is a biomarker for and mediator of hormone resistance in human breast cancer.

PloS one (2013-10-25)
Xinyu Wu, Yirong Li, Jinhua Wang, Xin Wen, Max T Marcus, Garrett Daniels, David Y Zhang, Fei Ye, Ling Hang Wang, Xinxin Du, Sylvia Adams, Baljit Singh, Jiri Zavadil, Peng Lee, Marie E Monaco
RESUMEN

The purpose of this study was to determine the role of long-chain fatty acyl-CoA synthetase 4 (ACSL4) in breast cancer. Public databases were utilized to analyze the relationship between ACSL4 mRNA expression and the presence of steroid hormone and human epidermal growth factor receptor 2 (HER2) in both breast cancer cell lines and tissue samples. In addition, cell lines were utilized to assess the consequences of either increased or decreased levels of ACSL4 expression. Proliferation, migration, anchorage-independent growth and apoptosis were used as biological end points. Effects on mRNA expression and signal transduction pathways were also monitored. A meta-analysis of public gene expression databases indicated that ACSL4 expression is positively correlated with a unique subtype of triple negative breast cancer (TNBC), characterized by the absence of androgen receptor (AR) and therefore referred to as quadruple negative breast cancer (QNBC). Results of experiments in breast cancer cell lines suggest that simultaneous expression of ACSL4 and a receptor is associated with hormone resistance. Forced expression of ACSL4 in ACSL4-negative, estrogen receptor α (ER)-positive MCF-7 cells resulted in increased growth, invasion and anchorage independent growth, as well as a loss of dependence on estrogen that was accompanied by a reduction in the levels of steroid hormone receptors. Sensitivity to tamoxifen, triacsin C and etoposide was also attenuated. Similarly, when HER2-positive, ACSL4-negative, SKBr3 breast cancer cells were induced to express ACSL4, the proliferation rate increased and the apoptotic effect of lapatinib was reduced. The growth stimulatory effect of ACSL4 expression was also observed in vivo in nude mice when MCF-7 control and ACSL4-expressing cells were utilized to induce tumors. Our data strongly suggest that ACSL4 can serve as both a biomarker for, and mediator of, an aggressive breast cancer phenotype.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Anti-β-actina monoclonal antibody produced in mouse, clone AC-15, ascites fluid
Sigma-Aldrich
Anti-ACSL4 antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution