Saltar al contenido
Merck

Hydroxyapatite coating on magnesium with MgF₂ interlayer for enhanced corrosion resistance and biocompatibility.

Journal of materials science. Materials in medicine (2011-09-13)
Ji-Hoon Jo, Bong-Gyu Kang, Kwang-Seon Shin, Hyoun-Ee Kim, Byung-Dong Hahn, Dong-Soo Park, Young-Hag Koh
RESUMEN

Hydroxyapatite (HA) was coated onto pure magnesium (Mg) with an MgF(2) interlayer in order to reduce the surface corrosion rate and enhance the biocompatibility. Both MgF(2) and HA were successfully coated in sequence with good adhesion properties using the fluoride conversion coating and aerosol deposition techniques, respectively. In a simulated body fluid (SBF), the double layer coating remarkably enhanced the corrosion resistance of the coated Mg specimen. The in vitro cellular responses of the MC3T3-E1 pre-osteoblasts were examined using a cell proliferation assay and an alkaline phosphatase (ALP) assay, and these results demonstrated that the double coating layer also enhanced cell proliferation and differentiation levels. In the in vivo study, the HA/MgF(2) coated Mg corroded less than the bare Mg and had a higher bone-to-implant contact (BIC) ratio in the cortical bone area of the rabbit femora 4 weeks after implantation. These in vitro and in vivo results suggested that the HA coated Mg with the MgF(2) interlayer could be used as a potential candidate for biodegradable implant materials.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Magnesium fluoride, random crystals, optical grade, ≥99.99% trace metals basis
Sigma-Aldrich
Magnesium fluoride, technical grade
Sigma-Aldrich
Magnesium fluoride, pieces, 3-6 mm, 99.9% trace metals basis (excluding Na)