Saltar al contenido
Merck
  • Metabolic response to an acute jump in cardiac workload: effects on malonyl-CoA, mechanical efficiency, and fatty acid oxidation.

Metabolic response to an acute jump in cardiac workload: effects on malonyl-CoA, mechanical efficiency, and fatty acid oxidation.

American journal of physiology. Heart and circulatory physiology (2007-12-18)
Lufang Zhou, Hazel Huang, Celvie L Yuan, Wendy Keung, Gary D Lopaschuk, William C Stanley
RESUMEN

Inhibition of myocardial fatty acid oxidation can improve left ventricular (LV) mechanical efficiency by increasing LV power for a given rate of myocardial energy expenditure. This phenomenon has not been assessed at high workloads in nonischemic myocardium; therefore, we subjected in vivo pig hearts to a high workload for 5 min and assessed whether blocking mitochondrial fatty acid oxidation with the carnitine palmitoyltransferase-I inhibitor oxfenicine would improve LV mechanical efficiency. In addition, the cardiac content of malonyl-CoA (an endogenous inhibitor of carnitine palmitoyltransferase-I) and activity of acetyl-CoA carboxylase (which synthesizes malonyl-CoA) were assessed. Increased workload was induced by aortic constriction and dobutamine infusion, and LV efficiency was calculated from the LV pressure-volume loop and LV energy expenditure. In untreated pigs, the increase in LV power resulted in a 2.5-fold increase in fatty acid oxidation and cardiac malonyl-CoA content but did not affect the activation state of acetyl-CoA carboxylase. The activation state of the acetyl-CoA carboxylase inhibitory kinase AMP-activated protein kinase decreased by 40% with increased cardiac workload. Pretreatment with oxfenicine inhibited fatty acid oxidation by 75% and had no effect on cardiac energy expenditure but significantly increased LV power and LV efficiency (37 +/- 5% vs. 26 +/- 5%, P < 0.05) at high workload. In conclusion, 1) myocardial fatty acid oxidation increases with a short-term increase in cardiac workload, despite an increase in malonyl-CoA concentration, and 2) inhibition of fatty acid oxidation improves LV mechanical efficiency by increasing LV power without affecting cardiac energy expenditure.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
4-Hydroxy-L-phenylglycine, ≥99.0% (NT)