Saltar al contenido
Merck

Al-Gazali Skeletal Dysplasia Constitutes the Lethal End of ADAMTSL2-Related Disorders.

Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research (2023-03-11)
Dominyka Batkovskyte, Fiona McKenzie, Fulya Taylan, Pelin Ozlem Simsek-Kiper, Sarah M Nikkel, Hirofumi Ohashi, Roger E Stevenson, Thuong Ha, Denise P Cavalcanti, Hiroyuki Miyahara, Steven A Skinner, Miguel A Aguirre, Zühal Akçören, Gulen Eda Utine, Tillie Chiu, Kenji Shimizu, Anna Hammarsjö, Koray Boduroglu, Hannah W Moore, Raymond J Louie, Peer Arts, Allie N Merrihew, Milena Babic, Matilda R Jackson, Nikos Papadogiannakis, Anna Lindstrand, Ann Nordgren, Christopher P Barnett, Hamish S Scott, Andrei S Chagin, Gen Nishimura, Giedre Grigelioniene
RESUMEN

Lethal short-limb skeletal dysplasia Al-Gazali type (OMIM %601356), also called dysplastic cortical hyperostosis, Al-Gazali type, is an ultra-rare disorder previously reported in only three unrelated individuals. The genetic etiology for Al-Gazali skeletal dysplasia has up until now been unknown. Through international collaborative efforts involving seven clinical centers worldwide, a cohort of nine patients with clinical and radiographic features consistent with short-limb skeletal dysplasia Al-Gazali type was collected. The affected individuals presented with moderate intrauterine growth restriction, relative macrocephaly, hypertrichosis, large anterior fontanelle, short neck, short and stiff limbs with small hands and feet, severe brachydactyly, and generalized bone sclerosis with mild platyspondyly. Biallelic disease-causing variants in ADAMTSL2 were detected using massively parallel sequencing (MPS) and Sanger sequencing techniques. Six individuals were compound heterozygous and one individual was homozygous for pathogenic variants in ADAMTSL2. In one of the families, pathogenic variants were detected in parental samples only. Overall, this study sheds light on the genetic cause of Al-Gazali skeletal dysplasia and identifies it as a semi-lethal part of the spectrum of ADAMTSL2-related disorders. Furthermore, we highlight the importance of meticulous analysis of the pseudogene region of ADAMTSL2 where disease-causing variants might be located. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Anti-FBN1 antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution