Saltar al contenido
Merck
  • Sex Differentially Alters Secretion of Brain Extracellular Vesicles During Aging: A Potential Mechanism for Maintaining Brain Homeostasis.

Sex Differentially Alters Secretion of Brain Extracellular Vesicles During Aging: A Potential Mechanism for Maintaining Brain Homeostasis.

Neurochemical research (2022-07-30)
Yohan Kim, Rocío Pérez-González, Chelsea Miller, Michelle Kurz, Pasquale D'Acunzo, Chris N Goulbourne, Efrat Levy
RESUMEN

Extracellular vesicles (EVs) in the brain play a role in neuronal homeostasis by removing intracellular material and regulating cell-to-cell communication. Given that sex and aging differentially modulate brain networks, we investigated sex-dependent differences in EV levels and content in the brain during aging. EVs were isolated from the brains of 3, 6, 12, 18, and 24 month-old female and male C57BL/6 J mice, and the levels of different EV species determined. While the number of plasma membrane-derived microvesicles and a subset of late endosomes-derived exosomes increased with age in the brain of female mice, no significant changes were seen in males. Mitochondria-derived mitovesicles in the brain increased during aging in both sexes, a change that may reflect aging-dependent alterations in mitochondrial function. These findings reveal enhanced turnover during aging in female brains, suggesting a mechanism for advantageous successful female brain aging and sex-depending different susceptibility to age-related neurodegenerative diseases.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Monoclonal Anti-β-Tubulin I+II antibody produced in mouse, clone JDR.3B8, ascites fluid
Sigma-Aldrich
Anti-OCIAD2 antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution