Saltar al contenido
Merck

Gastrointestinal synthetic epithelial linings.

Science translational medicine (2020-08-28)
Junwei Li, Thomas Wang, Ameya R Kirtane, Yunhua Shi, Alexis Jones, Zaina Moussa, Aaron Lopes, Joy Collins, Siddartha M Tamang, Kaitlyn Hess, Rameen Shakur, Paramesh Karandikar, Jung Seung Lee, Hen-Wei Huang, Alison Hayward, Giovanni Traverso
RESUMEN

Epithelial tissues line the organs of the body, providing an initial protective barrier as well as a surface for nutrient and drug absorption. Here, we identified enzymatic components present in the gastrointestinal epithelium that can serve as selective means for tissue-directed polymerization. We focused on the small intestine, given its role in drug and nutrient absorption and identified catalase as an essential enzyme with the potential to catalyze polymerization and growth of synthetic biomaterial layers. We demonstrated that the polymerization of dopamine by catalase yields strong tissue adhesion. We characterized the mechanism and specificity of the polymerization in segments of the gastrointestinal tracts of pigs and humans ex vivo. Moreover, we demonstrated proof of concept for application of these gastrointestinal synthetic epithelial linings for drug delivery, enzymatic immobilization for digestive supplementation, and nutritional modulation through transient barrier formation in pigs. This catalase-based approach to in situ biomaterial generation may have broad indications for gastrointestinal applications.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Cóctel de inhibidores de proteasas, for use with mammalian cell and tissue extracts, DMSO solution
Sigma-Aldrich
D-(+)-Glucosa, ≥99.5% (GC)
Sigma-Aldrich
Tampón RIPA
Sigma-Aldrich
Triton X-100, for molecular biology
Sigma-Aldrich
Cóctel de inhibidores de fosfatasa 3, DMSO solution
Sigma-Aldrich
Catalase from bovine liver, powder, suitable for cell culture, 2,000-5,000 units/mg protein
Sigma-Aldrich
3-Amino-1,2,4-triazole, ≥95% (TLC)
USP
Dopamina hydrochloride, United States Pharmacopeia (USP) Reference Standard
USP
Lactase, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Catalase from human erythrocytes, ≥90% (SDS-PAGE), buffered aqueous solution, ≥30,000 units/mg protein