Saltar al contenido
Merck

A Genetic Screen Identifies Etl4-Deficiency Capable of Stabilizing the Haploidy in Embryonic Stem Cells.

Stem cell reports (2021-01-14)
Guozhong Zhang, Xiaowen Li, Yi Sun, Xue Wang, Guang Liu, Yue Huang
RESUMEN

Mammalian haploid embryonic stem cells (haESCs) hold great promise for functional genetic studies and forward screening. However, all established haploid cells are prone to spontaneous diploidization during long-term culture, rendering application challenging. Here, we report a genome-wide loss-of-function screening that identified gene mutations that could significantly reduce the rate of self-diploidization in haESCs. We further demonstrated that CRISPR/Cas9-mediated Etl4 knockout (KO) stabilizes the haploid state in different haESC lines. More interestingly, Etl4 deficiency increases mitochondrial oxidative phosphorylation (OXPHOS) capacity and decreases glycolysis in haESCs. Mimicking this effect by regulating the energy metabolism with drugs decreased the rate of self-diploidization. Collectively, our study identified Etl4 as a novel haploidy-related factor linked to an energy metabolism transition occurring during self-diploidization of haESCs.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Yoduro de propidio, ≥94.0% (HPLC)
Sigma-Aldrich
Proteína LIF recombinante de ratón ESGRO®, ESGRO Leukemia Inhibitory Factor (LIF) supplement for mouse ES cell culture. Each vial contains 10^7 units/ml.
Sigma-Aldrich
Demecolcine solution, 10 μg/mL in HBSS, ACF Qualified, BioXtra
Sigma-Aldrich
bisBenzimide H 33342 trihydrochloride, ≥98% (HPLC and TLC)