Saltar al contenido
Merck

Hox2 Genes Are Required for Tonotopic Map Precision and Sound Discrimination in the Mouse Auditory Brainstem.

Cell reports (2017-01-05)
Kajari Karmakar, Yuichi Narita, Jonathan Fadok, Sebastien Ducret, Alberto Loche, Taro Kitazawa, Christel Genoud, Thomas Di Meglio, Raphael Thierry, Joao Bacelo, Andreas Lüthi, Filippo M Rijli
RESUMEN

Tonotopy is a hallmark of auditory pathways and provides the basis for sound discrimination. Little is known about the involvement of transcription factors in brainstem cochlear neurons orchestrating the tonotopic precision of pre-synaptic input. We found that in the absence of Hoxa2 and Hoxb2 function in Atoh1-derived glutamatergic bushy cells of the anterior ventral cochlear nucleus, broad input topography and sound transmission were largely preserved. However, fine-scale synaptic refinement and sharpening of isofrequency bands of cochlear neuron activation upon pure tone stimulation were impaired in Hox2 mutants, resulting in defective sound-frequency discrimination in behavioral tests. These results establish a role for Hox factors in tonotopic refinement of connectivity and in ensuring the precision of sound transmission in the mammalian auditory circuit.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Anticuerpo anti-transportador de glutamato vesicular 1, clone 3C10.2, Chemicon®, from mouse
Sigma-Aldrich
Anticuerpo anti-PAX6, from rabbit, purified by affinity chromatography
Sigma-Aldrich
Anti-BARHL1 antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution