Skip to Content
Merck
  • Mitophagy is required for mitochondrial biogenesis and myogenic differentiation of C2C12 myoblasts.

Mitophagy is required for mitochondrial biogenesis and myogenic differentiation of C2C12 myoblasts.

Autophagy (2015-11-15)
Jon Sin, Allen M Andres, David J R Taylor, Thomas Weston, Yoshimi Hiraumi, Aleksandr Stotland, Brandon J Kim, Chengqun Huang, Kelly S Doran, Roberta A Gottlieb
ABSTRACT

Myogenesis is a crucial process governing skeletal muscle development and homeostasis. Differentiation of primitive myoblasts into mature myotubes requires a metabolic switch to support the increased energetic demand of contractile muscle. Skeletal myoblasts specifically shift from a highly glycolytic state to relying predominantly on oxidative phosphorylation (OXPHOS) upon differentiation. We have found that this phenomenon requires dramatic remodeling of the mitochondrial network involving both mitochondrial clearance and biogenesis. During early myogenic differentiation, autophagy is robustly upregulated and this coincides with DNM1L/DRP1 (dynamin 1-like)-mediated fragmentation and subsequent removal of mitochondria via SQSTM1 (sequestosome 1)-mediated mitophagy. Mitochondria are then repopulated via PPARGC1A/PGC-1α (peroxisome proliferator-activated receptor gamma, coactivator 1 alpha)-mediated biogenesis. Mitochondrial fusion protein OPA1 (optic atrophy 1 [autosomal dominant]) is then briskly upregulated, resulting in the reformation of mitochondrial networks. The final product is a myotube replete with new mitochondria. Respirometry reveals that the constituents of these newly established mitochondrial networks are better primed for OXPHOS and are more tightly coupled than those in myoblasts. Additionally, we have found that suppressing autophagy with various inhibitors during differentiation interferes with myogenic differentiation. Together these data highlight the integral role of autophagy and mitophagy in myogenic differentiation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid, ≥97.0%
Sigma-Aldrich
Trizma® base, Primary Standard and Buffer, ≥99.9% (titration), crystalline
Sigma-Aldrich
Palmitoyl-L-carnitine chloride, ≥98% (TLC), powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid disodium salt dihydrate, ACS reagent, 99.0-101.0%
Sigma-Aldrich
Anti-Dynamin related protein 1 (Drp1) Antibody, from rabbit, purified by affinity chromatography
Sigma-Aldrich
Sodium deoxycholate, ≥97% (titration)
Sigma-Aldrich
Goat serum