Saltar al contenido
Merck

Predicted molecular signaling guiding photoreceptor cell migration following transplantation into damaged retina.

Scientific reports (2016-03-05)
Uchenna John Unachukwu, Alice Warren, Ze Li, Shawn Mishra, Jing Zhou, Moira Sauane, Hyungsik Lim, Maribel Vazquez, Stephen Redenti
RESUMEN

To replace photoreceptors lost to disease or trauma and restore vision, laboratories around the world are investigating photoreceptor replacement strategies using subretinal transplantation of photoreceptor precursor cells (PPCs) and retinal progenitor cells (RPCs). Significant obstacles to advancement of photoreceptor cell-replacement include low migration rates of transplanted cells into host retina and an absence of data describing chemotactic signaling guiding migration of transplanted cells in the damaged retinal microenvironment. To elucidate chemotactic signaling guiding transplanted cell migration, bioinformatics modeling of PPC transplantation into light-damaged retina was performed. The bioinformatics modeling analyzed whole-genome expression data and matched PPC chemotactic cell-surface receptors to cognate ligands expressed in the light-damaged retinal microenvironment. A library of significantly predicted chemotactic ligand-receptor pairs, as well as downstream signaling networks was generated. PPC and RPC migration in microfluidic ligand gradients were analyzed using a highly predicted ligand-receptor pair, SDF-1α - CXCR4, and both PPCs and RPCs exhibited significant chemotaxis. This work present a systems level model and begins to elucidate molecular mechanisms involved in PPC and RPC migration within the damaged retinal microenvironment.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Phosphatase Inhibitor Cocktail 2, aqueous solution (dark coloration may develop upon storage, which does not affect the activity)
Sigma-Aldrich
Triton X-100, laboratory grade
Sigma-Aldrich
Anti-CXCR4 antibody produced in rabbit, IgG fraction of antiserum, buffered aqueous solution