Saltar al contenido
Merck
  • Mechanism of the hydroxyl radical oxidation of methacryloyl peroxynitrate (MPAN) and its pathway toward secondary organic aerosol formation in the atmosphere.

Mechanism of the hydroxyl radical oxidation of methacryloyl peroxynitrate (MPAN) and its pathway toward secondary organic aerosol formation in the atmosphere.

Physical chemistry chemical physics : PCCP (2015-06-23)
Tran B Nguyen, Kelvin H Bates, John D Crounse, Rebecca H Schwantes, Xuan Zhang, Henrik G Kjaergaard, Jason D Surratt, Peng Lin, Alexander Laskin, John H Seinfeld, Paul O Wennberg
RESUMEN

Methacryloyl peroxynitrate (MPAN), the acyl peroxynitrate of methacrolein, has been suggested to be an important secondary organic aerosol (SOA) precursor from isoprene oxidation. Yet, the mechanism by which MPAN produces SOA through reaction with the hydroxyl radical (OH) is unclear. We systematically evaluate three proposed mechanisms in controlled chamber experiments and provide the first experimental support for the theoretically-predicted lactone formation pathway from the MPAN + OH reaction, producing hydroxymethyl-methyl-α-lactone (HMML). The decomposition of the MPAN-OH adduct yields HMML + NO3 (∼75%) and hydroxyacetone + CO + NO3 (∼25%), out-competing its reaction with atmospheric oxygen. The production of other proposed SOA precursors, e.g., methacrylic acid epoxide (MAE), from MPAN and methacrolein are negligible (<2%). Furthermore, we show that the beta-alkenyl moiety of MPAN is critical for lactone formation. Alkyl radicals formed cold via H-abstraction by OH do not decompose to HMML, even if they are structurally identical to the MPAN-OH adduct. The SOA formation from HMML, from polyaddition of the lactone to organic compounds at the particle interface or in the condensed phase, is close to unity under dry conditions. However, the SOA yield is sensitive to particle liquid water and solvated ions. In hydrated inorganic particles, HMML reacts primarily with H2O to produce the monomeric 2-methylglyceric acid (2MGA) or with aqueous sulfate and nitrate to produce the associated organosulfate and organonitrate, respectively. 2MGA, a tracer for isoprene SOA, is semivolatile and its accommodation in aerosol water decreases with decreasing pH. Conditions that enhance the production of neutral 2MGA suppress SOA mass from the HMML channel. Considering the liquid water content and pH ranges of ambient particles, 2MGA will exist largely as a gaseous compound in some parts of the atmosphere.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Peróxido de hidrógeno solution, 30 % (w/w) in H2O, contains stabilizer
Sigma-Aldrich
Acetonitrilo, anhydrous, 99.8%
Sigma-Aldrich
Methacrylic anhydride, contains 2,000 ppm topanol A as inhibitor, ≥94%
Sigma-Aldrich
Methacrylic acid, contains 250 ppm MEHQ as inhibitor, 99%
Sigma-Aldrich
Methanesulfonic acid, ≥99.0%
Sigma-Aldrich
Isobutiraldehído, ≥99%
Sigma-Aldrich
Methacrolein, 95%
Sigma-Aldrich
Isobutiraldehído, ≥98%, FG
Sigma-Aldrich
Peróxido de hidrógeno solution, 34.5-36.5%
Sigma-Aldrich
Acetonitrilo, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
Acetonitrilo solution, contains 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Acetonitrilo solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Peróxido de hidrógeno solution, SAJ first grade, ≥30.0%
Sigma-Aldrich
Acetonitrilo, electronic grade, 99.999% trace metals basis
Supelco
Acetonitrilo, HPLC grade, ≥99.93%
Sigma-Aldrich
Acetonitrilo, ≥99.8%, suitable for HPLC
Sigma-Aldrich
Isobutiraldehído, dry, 98%
Sigma-Aldrich
1,3-Propylene sulfite, 99%
Sigma-Aldrich
Isobutiraldehído, natural, 96%, FG
Sigma-Aldrich
Isobutiraldehído, 98%
Sigma-Aldrich
Acetonitrilo, ≥99.8%, for residue analysis, JIS 300
Sigma-Aldrich
Methanesulfonic acid solution, 70 wt. % in H2O
Sigma-Aldrich
Isobutiraldehído, redistilled, ≥99.5%
Sigma-Aldrich
Acetonitrilo, JIS special grade, ≥99.5%
Sigma-Aldrich
2-Methyl-3-buten-1-ol, 98%
Sigma-Aldrich
Acetonitrilo, ≥99.5%, ACS reagent
Sigma-Aldrich
Acetonitrilo solution, contains 0.05 % (w/v) ammonium formate, 5 % (v/v) water, 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Peróxido de hidrógeno solution, contains potassium stannate as inhibitor, 30-32 wt. % in water, semiconductor grade, 99.999% trace metals basis
Sigma-Aldrich
Methanesulfonic acid solution, 4 M (with 0.2% (w/v) tryptamine)
Sigma-Aldrich
Methacrylic acid, SAJ first grade, ≥98.0%