Saltar al contenido
Merck

Why dried blood spots are an ideal tool for CYP1A2 phenotyping.

Clinical pharmacokinetics (2014-07-02)
Pieter M M De Kesel, Willy E Lambert, Christophe P Stove
RESUMEN

Dried blood spot (DBS) sampling has gained wide interest in bioanalysis during the last decade and has already been successfully applied in pharmacokinetic and phenotyping studies. However, all of the available phenotyping studies used small datasets and did not include a systematic evaluation of DBS-specific parameters. The latter is important since several of these factors still challenge the breakthrough of DBS in routine practice. In this study, caffeine and paraxanthine are determined in capillary DBS, venous DBS, whole blood and plasma for cytochrome P450 (CYP) 1A2 phenotyping. The aim of this study was to explore the usefulness of DBS as a tool for CYP1A2 phenotyping. A CYP1A2 phenotyping study was conducted in 73 healthy volunteers who received a 150 mg oral dose of caffeine. Six hours post-administration, caffeine and paraxanthine concentrations and paraxanthine:caffeine molar concentration ratios, i.e., the actual CYP1A2 phenotyping indices, were determined in capillary DBS (obtained by non-volumetric application, direct from the fingertip), venous DBS, whole blood, and plasma. Furthermore, the impact of DBS-specific parameters, including hematocrit, volume spotted, and punch location, was evaluated. Concentrations of caffeine and paraxanthine in capillary DBS were, respectively, on average 12.7 and 13.8% lower than those in venous DBS and 31.5 and 33.1% lower than those in plasma. While these differences were statistically significant (p < 0.001), no significant difference was observed between the paraxanthine:caffeine molar ratios in the distinct evaluated matrices (p ≥ 0.053). This ratio also alleviated the impact of hematocrit and volume spotted. Using the largest DBS-based phenotyping study to date, we have demonstrated that CYP1A2 phenotyping in capillary DBS is a valid and convenient alternative for the classical plasma-based approach. Additionally, we have provided an objective basis as to why DBS are an ideal tool for CYP1A2 phenotyping.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Ácido fórmico, reagent grade, ≥95%
Sigma-Aldrich
Ácido fórmico, ACS reagent, ≥96%
Sigma-Aldrich
Ácido fórmico, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥98%
Sigma-Aldrich
Ácido fórmico, puriss., meets analytical specifications of DAC, FCC, 98.0-100%
Sigma-Aldrich
Ácido fórmico, ACS reagent, ≥88%
Supelco
Caffeine, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Caffeine, powder, ReagentPlus®
Sigma-Aldrich
Caffeine, anhydrous, 99%, FCC, FG
USP
Caffeine, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Ácido fórmico, ≥95%, FCC, FG
USP
Caffeine melting point standard, United States Pharmacopeia (USP) Reference Standard
Supelco
Caffeine Melting Point Standard, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Caffeine, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Sigma-Aldrich
1,7-Dimethylxanthine, ~98%, solid
Sigma-Aldrich
Ácido fórmico, JIS special grade, ≥98.0%
Sigma-Aldrich
Caffeine, Sigma Reference Standard, vial of 250 mg
Supelco
Schmelzpunktstandard 235-237°C, analytical standard
Sigma-Aldrich
Caffeine, anhydrous, tested according to Ph. Eur.
Sigma-Aldrich
Formic acid solution, BioUltra, 1.0 M in H2O
Supelco
Mettler-Toledo Calibration substance ME 18872, Caffeine, traceable to primary standards (LGC)
Sigma-Aldrich
Caffeine, meets USP testing specifications, anhydrous
Sigma-Aldrich
Caffeine, BioXtra
Sigma-Aldrich
Caffeine, SAJ special grade, ≥98.5%
Caffeine, European Pharmacopoeia (EP) Reference Standard
Caffeine for system suitability, European Pharmacopoeia (EP) Reference Standard