Saltar al contenido
Merck

Histone deacetylase inhibitors impair the elimination of HIV-infected cells by cytotoxic T-lymphocytes.

PLoS pathogens (2014-08-15)
Richard Brad Jones, Rachel O'Connor, Stefanie Mueller, Maria Foley, Gregory L Szeto, Dan Karel, Mathias Lichterfeld, Colin Kovacs, Mario A Ostrowski, Alicja Trocha, Darrell J Irvine, Bruce D Walker
RESUMEN

Resting memory CD4+ T-cells harboring latent HIV proviruses represent a critical barrier to viral eradication. Histone deacetylase inhibitors (HDACis), such as suberanilohydroxamic acid (SAHA), romidepsin, and panobinostat have been shown to induce HIV expression in these resting cells. Recently, it has been demonstrated that the low levels of viral gene expression induced by a candidate HDACi may be insufficient to cause the death of infected cells by viral cytopathic effects, necessitating their elimination by immune effectors, such as cytotoxic T-lymphocytes (CTL). Here, we study the impact of three HDACis in clinical development on T-cell effector functions. We report two modes of HDACi-induced functional impairment: i) the rapid suppression of cytokine production from viable T-cells induced by all three HDACis ii) the selective death of activated T-cells occurring at later time-points following transient exposures to romidepsin or, to a lesser extent, panobinostat. As a net result of these factors, HDACis impaired CTL-mediated IFN-γ production, as well as the elimination of HIV-infected or peptide-pulsed target cells, both in liquid culture and in collagen matrices. Romidepsin exerted greater inhibition of antiviral function than SAHA or panobinostat over the dose ranges tested. These data suggest that treatment with HDACis to mobilize the latent reservoir could have unintended negative impacts on the effector functions of CTL. This could influence the effectiveness of HDACi-based eradication strategies, by impairing elimination of infected cells, and is a critical consideration for trials where therapeutic interruptions are being contemplated, given the importance of CTL in containing rebound viremia.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Formaldehído solution, for molecular biology, 36.5-38% in H2O
SAFC
Formaldehído solution, contains 10-15% methanol as stabilizer, 37 wt. % in H2O
Sigma-Aldrich
Formaldehído solution, for molecular biology, BioReagent, ≥36.0% in H2O (T)
Sigma-Aldrich
Brefeldin A, from Penicillium brefeldianum, ≥99% (HPLC and TLC)
Sigma-Aldrich
Formaldehído solution, ACS reagent, 37 wt. % in H2O, contains 10-15% Methanol as stabilizer (to prevent polymerization)
Sigma-Aldrich
Brefeldin A, ≥99% (HPLC and TLC), BioXtra, for molecular biology
Supelco
Formaldehído solution, stabilized with methanol, ~37 wt. % in H2O, certified reference material
Sigma-Aldrich
SAHA, ≥98% (HPLC)
Sigma-Aldrich
Formaldehído solution, meets analytical specification of USP, ≥34.5 wt. %
Sigma-Aldrich
Brefeldin A, from Penicillium brefeldianum, Ready Made Solution, 10 mg/mL in DMSO
Sigma-Aldrich
Formaldehído solution, tested according to Ph. Eur.
Sigma-Aldrich
Formaldehído solution, SAJ first grade, ≥35.0%, contains methanol as stabilizer
Sigma-Aldrich
Formaldehído solution, 10%
Sigma-Aldrich
Formaldehído solution, JIS special grade, 36.0-38.0%, contains methanol as stabilizer
Sigma-Aldrich
Formaldehyde-12C solution, 20% in H2O, 99.9 atom % 12C