Saltar al contenido
Merck

Mitochondrial stress extends lifespan in C. elegans through neuronal hormesis.

Experimental gerontology (2014-04-09)
Silvia Maglioni, Alfonso Schiavi, Alessandra Runci, Anjumara Shaik, Natascia Ventura
RESUMEN

Progressive neuronal deterioration accompanied by sensory functions decline is typically observed during aging. On the other hand, structural or functional alterations of specific sensory neurons extend lifespan in the nematode Caenorhabditis elegans. Hormesis is a phenomenon by which the body benefits from moderate stress of various kinds which at high doses are harmful. Several studies indicate that different stressors can hormetically extend lifespan in C. elegans and suggest that hormetic effects could be exploited as a strategy to slow down aging and the development of age-associated (neuronal) diseases in humans. Mitochondria play a central role in the aging process and hormetic-like bimodal dose-response effects on C. elegans lifespan have been observed following different levels of mitochondrial stress. Here we tested the hypothesis that mitochondrial stress may hormetically extend C. elegans lifespan through subtle neuronal alterations. In support of our hypothesis we find that life-lengthening dose of mitochondrial stress reduces the functionality of a subset of ciliated sensory neurons in young animals. Notably, the same pro-longevity mitochondrial treatments rescue the sensory deficits in old animals. We also show that mitochondrial stress extends C. elegans lifespan acting in part through genes required for the functionality of those neurons. To our knowledge this is the first study describing a direct causal connection between sensory neuron dysfunction and extended longevity following mitochondrial stress. Our work supports the potential anti-aging effect of neuronal hormesis and open interesting possibility for the development of therapeutic strategy for age-associated neurodegenerative disorders.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Alcohol etílico puro, 200 proof, for molecular biology
Sigma-Aldrich
Alcohol etílico puro, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Alcohol etílico puro, 200 proof, HPLC/spectrophotometric grade
Sigma-Aldrich
Ammonium acetate, ACS reagent, ≥97%
Sigma-Aldrich
Alcohol etílico puro, 200 proof, meets USP testing specifications
Sigma-Aldrich
1-Butanol, 99.9%
Sigma-Aldrich
Alcohol etílico puro, 190 proof, for molecular biology
Sigma-Aldrich
1-Butanol, ACS reagent, ≥99.4%
Sigma-Aldrich
Ammonium acetate, ≥99.99% trace metals basis
Sigma-Aldrich
1-Butanol, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Alcohol etílico puro, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
Etanol, ACS reagent, prima fine spirit, without additive, F15 o1
Sigma-Aldrich
Ammonium acetate, for molecular biology, ≥98%
Sigma-Aldrich
Ammonium acetate solution, for molecular biology, 7.5 M
Supelco
Ammonium acetate, LiChropur, eluent additive for LC-MS
Sigma-Aldrich
Benzaldehyde, purified by redistillation, ≥99.5%
Sigma-Aldrich
1-Butanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.5% (GC)
Sigma-Aldrich
Alcohol etílico puro, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Ammonium acetate, 99.999% trace metals basis
Sigma-Aldrich
1-Butanol, for molecular biology, ≥99%
Sigma-Aldrich
Benzaldehyde, ReagentPlus®, ≥99%
Sigma-Aldrich
Etanol, purum, fine spirit, denaturated with 4.8% methanol, F25 METHYL1, ~96% (based on denaturant-free substance)
Sigma-Aldrich
1-Butanol, anhydrous, 99.8%
Sigma-Aldrich
Ammonium acetate, reagent grade, ≥98%
Supelco
Ethanol solution, certified reference material, 2000 μg/mL in methanol
Sigma-Aldrich
Etanol, puriss. p.a., absolute, ≥99.8% (GC)
Sigma-Aldrich
1-Butanol, natural, ≥99.5%, FCC, FG
Sigma-Aldrich
Alcohol etílico puro, 190 proof, meets USP testing specifications
Supelco
Ethanol solution, 10 % (v/v) in H2O, analytical standard
Sigma-Aldrich
Benzaldehyde, ≥98%, FG, FCC