Saltar al contenido
Merck
  • Relative gene expression in acid-adapted Escherichia coli O157:H7 during lactoperoxidase and lactic acid challenge in Tryptone Soy Broth.

Relative gene expression in acid-adapted Escherichia coli O157:H7 during lactoperoxidase and lactic acid challenge in Tryptone Soy Broth.

Microbiological research (2009-12-17)
Angela A Parry-Hanson, Piet J Jooste, Elna M Buys
RESUMEN

Cross-protection of acid-adapted Escherichia coli O157:H7 against inimical stresses is mediated by the glucose-repressed sigma factor RpoS. However, many food systems in which E. coli O157:H7 occurs are complex and contain glucose. This study was aimed at investigating the contribution of acid and lactoperoxidase (LP)-inducible genes to cross-protection of E. coli O157:H7 against LP system and lactic acid (LA) in Tryptone Soy Broth (TSB). Acid-adapted and non-adapted E. coli O157:H7 were challenged to activated LP and LA at pH 4.0 and 5.0 in TSB for 6h at 25°C followed by expression of acid and LP-inducible genes. Acid-adapted E. coli showed cross-protection against activated LP and LA. All the acid-inducible genes tested were repressed at pH 4.0 with or without activated LP system. At pH 7.4, gadA, ompC and ompF were induced in acid-adapted cells. Induction of corA occurred in non-adapted cells but was repressed in acid-adapted cells. Although acid-inducible genes were repressed at pH 4.0, high resistance of acid-adapted cells indicates that expression of acid-inducible genes occurred during acid adaptation and not the actual challenge. Repression of rpoS indicates that RpoS-independent systems contribute to cross-protection in acid-adapted E. coli O157:H7.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Peptone from animal tissue, from meat, BioReagent, suitable for cell culture, suitable for plant cell culture
Millipore
Peptone from milk solids, Refined hydrolysate
Millipore
Peptone from animal tissue, from meat
Millipore
Proteose Peptone, Enzymatic hydrolysate
Millipore
Peptone from casein and other animal proteins, suitable for microbiology
Millipore
Peptone Primatone® RL, suitable for microbiology
Sigma-Aldrich
Peptone from animal tissue, SAJ first grade