Saltar al contenido
Merck

Intracellular zinc signaling influences NMDA receptor function by enhancing the interaction of ZnT1 with GluN2A.

Neuroscience letters (2022-10-07)
Rebecca Krall, Jenna R Gale, Madeline M Ross, Thanos Tzounopoulos, Elias Aizenman
RESUMEN

Zinc, loaded into glutamate-containing presynaptic vesicles and released into the synapse in an activity-dependent manner, modulates neurotransmission through its actions on postsynaptic targets, prominently via high-affinity inhibition of GluN2A-containing NMDA receptors. Recently, we identified a postsynaptic transport mechanism that regulates endogenous zinc inhibition of NMDARs. In this new model of zinc regulation, the postsynaptic transporter ZnT1 mediates zinc inhibition of NMDARs by binding to GluN2A. Through this interaction, ZnT1, a transporter that moves zinc from the cytoplasm to the extracellular domain, generates a zinc microdomain that modulates NMDAR-mediated neurotransmission. As ZnT1 expression is transcriptionally driven by the metal-responsive transcription factor 1 (MTF-1), we found that intracellular zinc strongly drives MTF-1 in cortical neurons in vitro and increases the number of GluN2A-ZnT1 interactions, thereby enhancing tonic zinc inhibition of NMDAR-mediated currents. Importantly, this effect is absent when the interaction between GluN2A and ZnT1 is disrupted by a cell-permeable peptide. These results suggest that zinc-regulated gene expression can dynamically regulate NMDAR-mediated synaptic processes.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Anti-β-actina monoclonal antibody produced in mouse, clone AC-15, ascites fluid
Sigma-Aldrich
Monoclonal Anti-Glun2A/Nr2A antibody produced in mouse, clone S327-95, purified immunoglobulin