Saltar al contenido
Merck

Wireless neuromodulation in vitro and in vivo by intrinsic TRPC-mediated magnetomechanical stimulation.

Communications biology (2022-11-04)
Chih-Lun Su, Chao-Chun Cheng, Ping-Hsiang Yen, Jun-Xuan Huang, Yen-Jing Ting, Po-Han Chiang
RESUMEN

Various magnetic deep brain stimulation (DBS) methods have been developing rapidly in the last decade for minimizing the invasiveness of DBS. However, current magnetic DBS methods, such as magnetothermal and magnetomechanical stimulation, require overexpressing exogeneous ion channels in the central nervous system (CNS). It is unclear whether magnetomechanical stimulation can modulate non-transgenic CNS neurons or not. Here, we reveal that the torque of magnetic nanodiscs with weak and slow alternative magnetic field (50 mT at 10 Hz) could activate neurons through the intrinsic transient receptor potential canonical channels (TRPC), which are mechanosensitive ion channels widely expressed in the brain. The immunostaining with c-fos shows the increasement of neuronal activity by wireless DBS with magnetomechanical approach in vivo. Overall, this research demonstrates a magnetic nanodiscs-based magnetomechanical approach that can be used for wireless neuronal stimulation in vitro and untethered DBS in vivo without implants or genetic manipulation.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Anticuerpo anti-NeuN, clon A60, clone A60, Chemicon®, from mouse
Sigma-Aldrich
Anticuerpo anti-NeuN (monoclonal de conejo), clon 27-4, clone 27-4, from rabbit
Sigma-Aldrich
Anti-TrpC6 Antibody, Chemicon®, from rabbit