Saltar al contenido
Merck

DNA-PKcs Inhibition Extends Allogeneic Skin Graft Survival.

Transplantation (2020-09-06)
David K Harrison, Zachary J Waldrip, Lyle Burdine, Sara C Shalin, Marie Schluterman Burdine
RESUMEN

Organ transplantation is life-saving and continued investigations into immunologic mechanisms that drive organ rejection are needed to improve immunosuppression therapies and prevent graft failure. DNA-dependent protein kinase catalytic subunit, DNA dependent-protein kinase catalytic subunit (DNA-PKcs), is a critical component of both the cellular and humoral immune responses. In this study, we investigate the contribution of DNA-PKcs to allogeneic skin graft rejection to potentially highlight a novel strategy for inhibiting transplant rejection. Fully MHC mismatched murine allogeneic skin graft studies were performed by transplanting skin from BalbC mice to C57bl6 mice and treating with either vehicle or the DNA-PKcs inhibitor NU7441. Graft rejection, cytokine production, immune cell infiltration, and donor-specific antibody formation were analyzed. DNA-PKcs inhibition significantly reduced necrosis and extended graft survival compared with controls (mean survival 14 d versus 9 d, respectively). Inhibition reduced the production of the cytokines interleukin (IL)-2, IL-4, IL-6, IL-10, TNF-α, and IFN-γ and the infiltration of CD3+ lymphocytes into grafts. Furthermore, DNA-PKcs inhibition reduced the number of CD19+ B cells and CD19+ CD138+ plasma cells coinciding with a significant reduction in donor-specific antibodies. At a molecular level, we determined that the immunosuppressive effects of DNA-PKcs inhibition were mediated, in part, via inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells signaling through reduced expression of the p65 subunit. Our data confirm that DNA-PKcs contributes to allogeneic graft rejection and highlight a novel immunologic function for DNA-PKcs in the regulation of nuclear factor kappa-light-chain-enhancer of activated B cells and concomitant cytokine production.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Millipore
Panel de células T de rata de alta sensibilidad MILLIPLEX® - Análisis inmunológico múltiple, Simultaneous analyze low levels of cytokine and chemokine biomarker with the High Sensitivity Bead-Based Multiplex Assays using the Luminex technology, in mouse serum, plasma and cell culture samples.