Saltar al contenido
Merck

Inhibition of heat shock protein 90 destabilizes receptor tyrosine kinase ROR1 in lung adenocarcinoma.

Cancer science (2020-12-29)
Behnoush Khaledian, Ayumu Taguchi, Kazuo Shin-Ya, Lisa Kondo-Ida, Noritaka Kagaya, Motoshi Suzuki, Taisuke Kajino, Tomoya Yamaguchi, Yukako Shimada, Takashi Takahashi
RESUMEN

We have previously identified receptor tyrosine kinase-like orphan receptor 1 (ROR1) as a direct transcriptional target of TTF-1/NKX2-1, a lineage-survival oncogene in lung adenocarcinoma. ROR1 sustains prosurvival signaling from multiple receptor tyrosine kinases including epidermal growth factor receptor, MET, and insulin-like growth factor 1 receptor in part by maintaining the caveolae structure as a scaffold protein of cavin-1 and caveolin-1. In this study, a high throughput screening of the natural product library containing 2560 compounds was undertaken using a cell-based FluoPPI assay detecting ROR1-cavin-1 interaction. As a result, geldanamycin (GA), a known inhibitor of heat shock protein 90 (HSP90), was identified as a potential inhibitor of ROR1. Geldanamycin, as well as two GA derivatives tested in the clinic, 17-allylamino-17-demethoxygeldanamycin (17-AAG) and 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), decreased ROR1 protein expression. We found that ROR1 physically interacted with HSP90α, but not with other HSP90 paralogs, HSP90β or GRP94. Geldanamycin in turn destabilized and degraded ROR1 protein in a dose- and time-dependent manner through the ubiquitin/proteasome pathway, resulting in a significant suppression of cell proliferation in lung adenocarcinoma cell lines, for which the kinase domain of ROR1, but not its kinase activity or N-glycosylation, was required. Our findings indicate that HSP90 is required to sustain expression of ROR1 crucial for lung adenosarcoma survival, suggesting that inhibition of HSP90 could be a promising therapeutic strategy in ROR1-positive lung adenocarcinoma.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Anti-β-actina monoclonal antibody produced in mouse, clone AC-15, ascites fluid
Sigma-Aldrich
MG-132, disolución preparada, ≥90% (HPLC)
Sigma-Aldrich
Cycloheximide, ≥90% (HPLC)
Sigma-Aldrich
Gefitinib, ≥98% (HPLC)
Sigma-Aldrich
17-AAG, according to ISO 10272, A less toxic, potent, synthetic derivative of the ansamycin benzoquinone antibiotic Geldanamycin, Streptomyces hygroscopicus., GranuCult® prime
Sigma-Aldrich
17-DMAG, A potent antitumor analog of 17-AAG that binds to the ATPase site of human Hsp90α with high affinity and displays excellent bioavailability and aqueous solubility.