Saltar al contenido
Merck
  • Comparison of ligand binding and conformational stability of human calmodulin with its homolog from the malaria parasite Plasmodium falciparum.

Comparison of ligand binding and conformational stability of human calmodulin with its homolog from the malaria parasite Plasmodium falciparum.

FASEB bioAdvances (2020-08-22)
Tünde Juhász, József Kardos, Zsolt Dürvanger, Veronika Harmat, Károly Liliom
RESUMEN

Calmodulin (CaM), the key calcium sensor of eukaryotic cells regulating a great number of target proteins, belongs to the most conserved proteins. We compared function and properties of CaMs from two evolutionarily distant species, the human (Homo sapiens) representing vertebrates, and the malaria parasite Plasmodium falciparum (Pf). The biophysical characterization revealed higher stability of Pf CaM attributed to the more stable C-terminal domain in both Ca2+ free and saturated states. In vitro binding and functional assays demonstrated that human and Pf CaM exhibit similar biochemical features involving small molecule inhibitor binding and target enzyme activation as illustrated by comparable affinities differing only within a factor of three. It has been reported that CaM antagonists proved to be antimalarials, so Pf CaM could be a potential target to combat malaria parasites. Indeed, we observed that phenotypically active compounds from the Malaria Box could show inhibitory action on Pf CaM, among them the most potent exhibited comparable inhibition to known antagonists of vertebrate CaM. However, based on the minor binding differences in Pf CaM to human CaM, we conclude that CaM is an unsuited target for human intervention against malaria, due to the likely interference with the host protein.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
N-(6-Aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride
Sigma-Aldrich
MLCK (1425-1776), active, GST tagged human, PRECISIO® Kinase, recombinant, expressed in baculovirus infected Sf9 cells, ≥70% (SDS-PAGE), buffered aqueous glycerol solution
Sigma-Aldrich
Myosin Light Chain Kinase Substrate (smooth muscle)