Saltar al contenido
Merck

Dynamic biospeckle analysis, a new tool for the fast screening of plant nematicide selectivity.

Plant methods (2020-01-01)
Felicity E O'Callaghan, Roy Neilson, Stuart A MacFarlane, Lionel X Dupuy
RESUMEN

Plant feeding, free-living nematodes cause extensive damage to plant roots by direct feeding and, in the case of some trichodorid and longidorid species, through the transmission of viruses. Developing more environmentally friendly, target-specific nematicides is currently impeded by slow and laborious methods of toxicity testing. Here, we developed a bioactivity assay based on the dynamics of light 'speckle' generated by living cells and we demonstrate its application by assessing chemicals' toxicity to different nematode trophic groups. Free-living nematode populations extracted from soil were exposed to methanol and phenyl isothiocyanate (PEITC). Biospeckle analysis revealed differing behavioural responses as a function of nematode feeding groups. Trichodorus nematodes were less sensitive than were bacterial feeding nematodes or non-trichodorid plant feeding nematodes. Following 24 h of exposure to PEITC, bioactivity significantly decreased for plant and bacterial feeders but not for Trichodorus nematodes. Decreases in movement for plant and bacterial feeders in the presence of PEITC also led to measurable changes to the morphology of biospeckle patterns. Biospeckle analysis can be used to accelerate the screening of nematode bioactivity, thereby providing a fast way of testing the specificity of potential nematicidal compounds. With nematodes' distinctive movement and activity levels being visible in the biospeckle pattern, the technique has potential to screen the behavioural responses of diverse trophic nematode communities. The method discriminates both behavioural responses, morphological traits and activity levels and hence could be used to assess the specificity of nematicidal compounds.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Supelco
Fluorimeter cuvettes, Polymethacrylate, without stopper