Skip to Content
Merck
  • Thrombin receptor PAR-1 activation on endothelial progenitor cells enhances chemotaxis-associated genes expression and leukocyte recruitment by a COX-2-dependent mechanism.

Thrombin receptor PAR-1 activation on endothelial progenitor cells enhances chemotaxis-associated genes expression and leukocyte recruitment by a COX-2-dependent mechanism.

Angiogenesis (2015-06-01)
Clément d'Audigier, Clément Cochain, Elisa Rossi, Coralie L Guérin, Ivan Bièche, Adeline Blandinières, Bérengère Marsac, Jean-Sébastien Silvestre, Pascale Gaussem, David M Smadja
ABSTRACT

Endothelial colony forming cells (ECFC) represent a subpopulation of endothelial progenitor cells involved in endothelial repair. The activation of procoagulant mechanisms associated with the vascular wall's inflammatory responses to injury plays a crucial role in the induction and progression of atherosclerosis. However, little is known about ECFC proinflammatory potential. To explore the role of the thrombin receptor PAR-1 proinflammatory effects on ECFC chemotaxis/recruitment capacity. The expression of 30 genes known to be associated with inflammation and chemotaxis was quantified in ECFC by real-time qPCR. PAR-1 activation with the SFLLRN peptide (PAR-1-ap) resulted in a significant increase in nine chemotaxis-associated genes expression, including CCL2 and CCL3 whose receptors are present on ECFC. Furthermore, COX-2 expression was found to be dramatically up-regulated consequently to PAR-1 activation. COX-2 silencing with the specific COX-2-siRNA also triggered down-regulation of the nine target genes. Conditioned media (c.m.) from control-siRNA- and COX-2-siRNA-transfected ECFC, stimulated or not with PAR-1-ap, were produced and tested on ECFC capacity to recruit leukocytes in vitro as well in the muscle of ischemic hindlimb in a preclinical model. The capacity of the c.m. from ECFC stimulated with PAR-1-ap to recruit leukocytes was abrogated when COX-2 gene expression was silenced in vitro (in terms of U937 cells migration and adhesion to endothelial cells) as well as in vivo. Finally, the postnatal vasculogenic stem cell derived from infantile hemangioma tumor (HemSC) incubated with PAR-1-ap increased leukocyte recruitment in Matrigel(®) implant. PAR-1 activation in ECFC increases chemotactic gene expression and leukocyte recruitment at ischemic sites through a COX-2-dependent mechanism.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
MISSION® esiRNA, targeting human F2R
Sigma-Aldrich
5-Carboxy-fluorescein diacetate N-succinimidyl ester, for fluorescence, ≥95.0% (HPLC)
Sigma-Aldrich
5(6)-Carboxyfluorescein diacetate N-succinimidyl ester, BioReagent, suitable for fluorescence, ≥90% (HPLC)
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Mark2
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Ptgs2
Sigma-Aldrich
MISSION® esiRNA, targeting human PTGS2
Sigma-Aldrich
MISSION® esiRNA, targeting human MARK2