Skip to Content
Merck
  • Genome-wide synthetic lethal screen unveils novel CAIX-NFS1/xCT axis as a targetable vulnerability in hypoxic solid tumors.

Genome-wide synthetic lethal screen unveils novel CAIX-NFS1/xCT axis as a targetable vulnerability in hypoxic solid tumors.

Science advances (2021-08-29)
Shawn C Chafe, Frederick S Vizeacoumar, Geetha Venkateswaran, Oksana Nemirovsky, Shannon Awrey, Wells S Brown, Paul C McDonald, Fabrizio Carta, Andrew Metcalfe, Joanna M Karasinska, Ling Huang, Senthil K Muthuswamy, David F Schaeffer, Daniel J Renouf, Claudiu T Supuran, Franco J Vizeacoumar, Shoukat Dedhar
ABSTRACT

The metabolic mechanisms involved in the survival of tumor cells within the hypoxic niche remain unclear. We carried out a synthetic lethal CRISPR screen to identify survival mechanisms governed by the tumor hypoxia-induced pH regulator carbonic anhydrase IX (CAIX). We identified a redox homeostasis network containing the iron-sulfur cluster enzyme, NFS1. Depletion of NFS1 or blocking cyst(e)ine availability by inhibiting xCT, while targeting CAIX, enhanced ferroptosis and significantly inhibited tumor growth. Suppression of CAIX activity acidified intracellular pH, increased cellular reactive oxygen species accumulation, and induced susceptibility to alterations in iron homeostasis. Mechanistically, inhibiting bicarbonate production by CAIX or sodium-driven bicarbonate transport, while targeting xCT, decreased adenosine 5'-monophosphate-activated protein kinase activation and increased acetyl-coenzyme A carboxylase 1 activation. Thus, an alkaline intracellular pH plays a critical role in suppressing ferroptosis, a finding that may lead to the development of innovative therapeutic strategies for solid tumors to overcome hypoxia- and acidosis-mediated tumor progression and therapeutic resistance.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Ferric citrate, BioReagent, suitable for cell culture
Sigma-Aldrich
Deferoxamine mesylate salt, powder, ≥92.5% (TLC)
Sigma-Aldrich
Ammonium chloride, for molecular biology, suitable for cell culture, ≥99.5%
Sigma-Aldrich
Anti-Vinculin Antibody, clone VIIF9 (7F9), clone VIIF9 (7F9), Chemicon®, from mouse
Sigma-Aldrich
Fluorometric Intracellular pH Assay Kit, sufficient for 1000 fluorometric tests
Sigma-Aldrich
Nigericin sodium salt, ≥98% (TLC)
Sigma-Aldrich
(±)-6-Hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid, 97%