Skip to Content
Merck
  • Syntaxin 4 regulates the surface localization of a promyogenic receptor Cdo thereby promoting myogenic differentiation.

Syntaxin 4 regulates the surface localization of a promyogenic receptor Cdo thereby promoting myogenic differentiation.

Skeletal muscle (2015-09-09)
Miran Yoo, Bok-Geon Kim, Sang-Jin Lee, Hyeon-Ju Jeong, Jong Woo Park, Dong-Wan Seo, Yong Kee Kim, Hoi Young Lee, Jeung-Whan Han, Jong-Sun Kang, Gyu-Un Bae
ABSTRACT

Syntaxins are a family of membrane proteins involved in vesicle trafficking, such as synaptic vesicle exocytosis. Syntaxin 4 (Stx4) is expressed highly in skeletal muscle and plays a critical role in insulin-stimulated glucose uptake by promoting translocation of glucose transporter 4 (GLUT4) to the cell surface. A cell surface receptor cell adhesion molecule-related, down-regulated by oncogenes (Cdo) is a component of cell adhesion complexes and promotes myoblast differentiation via activation of key signalings, including p38MAPK and AKT. In this study, we investigate the function of Stx4 in myoblast differentiation and the crosstalk between Stx4 and Cdo in myoblast differentiation. The effects of overexpression or shRNA-based depletion of Stx4 and Cdo genes on C2C12 myoblast differentiation are assessed by Western blotting and immunofluorescence approaches. The interaction between Cdo and Stx4 and the responsible domain mapping are assessed by coimmunoprecipitation or pulldown assays. The effect of Stx4 depletion on cell surface localization of Cdo and GLUT4 in C2C12 myoblasts is assessed by surface biotinylation and Western blotting. Overexpression or knockdown of Stx4 enhances or inhibits myogenic differentiation, respectively. Stx4 binds to the cytoplasmic tail of Cdo, and this interaction seems to be critical for induction of p38MAPK activation and myotube formation. Stx4 depletion decreases specifically the cell surface localization of Cdo without changes in surface N-Cadherin levels. Interestingly, Cdo depletion reduces the level of GLUT4 and Stx4 at cell surface. Consistently, overexpression of Cdo in C2C12 myoblasts generally increases glucose uptake, while Cdo depletion reduces it. Stx4 promotes myoblast differentiation through interaction with Cdo and stimulation of its surface translocation. Both Cdo and Stx4 are required for GLUT4 translocation to cell surface and glucose uptake in myoblast differentiation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Sodium chloride, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium chloride, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Stx4a
Sigma-Aldrich
Sodium chloride, tablet
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, BioUltra, ≥99% (titration)
Sigma-Aldrich
Anti-Pan Cadherin antibody produced in rabbit, whole antiserum
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
MISSION® esiRNA, targeting human STX4
Sigma-Aldrich
2-Deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-D-glucose, ≥97% (HPLC)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, Vetec, reagent grade, 98%