Skip to Content
Merck
  • Involvement of COX2-thromboxane pathway in TCDD-induced precardiac edema in developing zebrafish.

Involvement of COX2-thromboxane pathway in TCDD-induced precardiac edema in developing zebrafish.

Aquatic toxicology (Amsterdam, Netherlands) (2014-05-27)
Hiroki Teraoka, Yuki Okuno, Daisuke Nijoukubo, Ayumi Yamakoshi, Richard E Peterson, John J Stegeman, Takio Kitazawa, Takeo Hiraga, Akira Kubota
ABSTRACT

The cardiovascular system is one of the most characteristic and important targets for developmental toxicity by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in fish larvae. However, knowledge of the mechanism of TCDD-induced edema after heterodimerization of aryl hydrocarbon receptor type 2 (AHR2) and AHR nuclear translocator type 1 (ARNT1) is still limited. In the present study, microscopic analysis with a high-speed camera revealed that TCDD increased the size of a small cavity between the heart and body wall in early eleutheroembryos, a toxic effect that we designate as precardiac edema. A concentration-response curve for precardiac edema at 2 days post fertilization (dpf) showed close similarity to that for conventional pericardial edema at 3 dpf. Precardiac edema caused by TCDD was reduced by morpholino knockdown of AHR2 and ARNT1, as well as by an antioxidant (ascorbic acid). A selective inhibitor of cyclooxygenase type 2 (COX2), NS398, also markedly inhibited TCDD-induced precardiac edema. A thromboxane receptor (TP) antagonist, ICI-192,605 almost abolished TCDD-induced precardiac edema and this effect was canceled by U46619, a TP agonist, which was not influential in the action of TCDD by itself. Knockdown of COX2b and thromboxane A synthase 1 (TBXS), but not COX2a, strongly reduced TCDD-induced precardiac edema. Knockdown of COX2b was without effect on mesencephalic circulation failure caused by TCDD. The edema by TCDD was also inhibited by knockdown of c-mpl, a thrombopoietin receptor necessary for thromobocyte production. Finally, induction of COX2b, but not COX2a, by TCDD was seen in eleutheroembryos at 3 dpf. These results suggest a role of the COX2b-thromboxane pathway in precardiac edema formation following TCDD exposure in developing zebrafish.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
L-Ascorbic acid, tested according to Ph. Eur.
Sigma-Aldrich
L-Ascorbic acid, puriss. p.a., ≥99.0% (RT)
Sigma-Aldrich
L-Ascorbic acid, BioUltra, ≥99.5% (RT)
Sigma-Aldrich
(+)-Sodium L-ascorbate, BioXtra, ≥99.0% (NT)
Sigma-Aldrich
L-Ascorbic acid, puriss. p.a., ACS reagent, reag. ISO, Ph. Eur., 99.7-100.5% (oxidimetric)
Sigma-Aldrich
L-Ascorbic acid, ACS reagent, ≥99%
Sigma-Aldrich
L-Ascorbic acid, 99%
Supelco
L-Ascorbic acid, analytical standard
Sigma-Aldrich
(+)-Sodium L-ascorbate, crystalline, ≥98%
Sigma-Aldrich
(+)-Sodium L-ascorbate, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
L-Ascorbic acid, powder, suitable for cell culture, γ-irradiated
Sigma-Aldrich
L-Ascorbic acid, meets USP testing specifications
Sigma-Aldrich
L-Ascorbic acid, reagent grade, crystalline
Sigma-Aldrich
L-Ascorbic acid, reagent grade
Sigma-Aldrich
L-Ascorbic acid, BioXtra, ≥99.0%, crystalline
Sigma-Aldrich
L-Ascorbic acid, suitable for cell culture, suitable for plant cell culture, ≥98%
Sigma-Aldrich
L-Ascorbic acid, FCC, FG
Supelco
Sodium ascorbate, Pharmaceutical Secondary Standard; Certified Reference Material
Sodium ascorbate, European Pharmacopoeia (EP) Reference Standard
USP
Ascorbic acid, United States Pharmacopeia (USP) Reference Standard
Ascorbic acid, European Pharmacopoeia (EP) Reference Standard
Supelco
Ascorbic Acid, Pharmaceutical Secondary Standard; Certified Reference Material