Skip to Content
Merck
  • Chemocatalytic conversion of ethanol into butadiene and other bulk chemicals.

Chemocatalytic conversion of ethanol into butadiene and other bulk chemicals.

ChemSusChem (2013-05-25)
Carlo Angelici, Bert M Weckhuysen, Pieter C A Bruijnincx
ABSTRACT

The development of new and improved processes for the synthesis of bio-based chemicals is one of the scientific challenges of our time. These new discoveries are not only important from an environmental point of view, but also represent an important economic opportunity, provided that the developed processes are selective and efficient. Bioethanol is currently produced from renewable resources in large amounts and, in addition to its use as biofuel, holds considerable promise as a building block for the chemical industry. Indeed, further improvements in production, both in terms of efficiency and feedstock selection, will guarantee availability at competitive prices. The conversion of bioethanol into commodity chemicals, in particular direct 'drop-in' replacements is, therefore, becoming increasingly attractive, provided that the appropriate (catalytic) technology is in place. The production of green and renewable 1,3-butadiene is a clear example of this approach. The Lebedev process for the one-step catalytic conversion of ethanol to butadiene has been known since the 1930s and has been applied on an industrial scale to produce synthetic rubber. Later, the availability of low-cost oil made it more convenient to obtain butadiene from petrochemical sources. The desire to produce bulk chemicals in a sustainable way and the availability of low-cost bioethanol in large volumes has, however, resulted in a renaissance of this old butadiene production process. This paper reviews the catalytic aspects associated with the synthesis of butadiene via the Lebedev process, as well as the production of other, mechanistically related bulk chemicals that can be obtained from (bio)ethanol.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Reagent Alcohol, suitable for HPLC
Sigma-Aldrich
Reagent Alcohol, anhydrous, ≤0.003% water
Sigma-Aldrich
Reagent Alcohol, reagent grade
Supelco
Ethanol solution, certified reference material, 2000 μg/mL in methanol
Sigma-Aldrich
Reagent Alcohol, anhydrous, ≤0.005% water
USP
Dehydrated Alcohol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Ethanol, for residue analysis
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Ethanol, purum, absolute ethanol, denaturated with 2% 2-butanone, A15 MEK1, ≥99.8% (based on denaturant-free substance)
Sigma-Aldrich
Ethanol, ACS reagent, prima fine spirit, without additive, F15 o1
Sigma-Aldrich
Ethanol, purum, fine spirit, denaturated with 4.8% methanol, F25 METHYL1, ~96% (based on denaturant-free substance)
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, HPLC/spectrophotometric grade
Sigma-Aldrich
Ethanol, puriss. p.a., absolute, ≥99.8% (GC)
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, meets USP testing specifications
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, for molecular biology