Skip to Content
Merck
  • Effect of admicellar properties on adsolubilization: column studies and solute transport.

Effect of admicellar properties on adsolubilization: column studies and solute transport.

Water research (2007-02-03)
A Fuangswasdi, S Krajangpan, D A Sabatini, E J Acosta, K Osathaphan, C Tongcumpou
ABSTRACT

Mixtures of anionic and cationic surfactants exhibit synergistic behavior as evidenced by low critical micelle concentrations (CMC) of the mixed system, increased surface activity, and improved detergency performance. The adsorption of a single-head anionic surfactant, sodium dodecyl sulfate (SDS), in mixture with a twin-head cationic surfactant, pentamethyl-octadecyl-1,3-propane diammonium dichloride (PODD), showed synergism of adsorption onto silica when present at a mixing ratio of 1:3 (cationic-rich), and also demonstrated lower surfactant desorption with water flushing of columns packed with the surfactant-modified media. In addition, the proportion of the mixed surfactants in the admicelles moved from the initial ratio of 1:3 towards equimolar after rinsing the surfactant-modified silica absorbent. The retardation of organic solutes passing through columns packed with modified-silica adsorbent increased nominally three fold for silica modified with mixed surfactants versus single surfactants (retardation factors increase from 4.0 to 12.8 for styrene and from 32.1 to 90.2 for ethylcyclohexane for single and mixed surfactants, respectively). Thus, this study demonstrates that mixed surfactant systems more effectively modified the silica surface than single surfactant systems both in terms of enhanced retardation of organic solutes and in terms of reduced surfactant desorption.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Ethylcyclohexane, ≥99%