Skip to Content
Merck

The protein organization of a red blood cell.

Cell reports (2022-07-21)
Wisath Sae-Lee, Caitlyn L McCafferty, Eric J Verbeke, Pierre C Havugimana, Ophelia Papoulas, Claire D McWhite, John R Houser, Kim Vanuytsel, George J Murphy, Kevin Drew, Andrew Emili, David W Taylor, Edward M Marcotte
ABSTRACT

Red blood cells (RBCs) (erythrocytes) are the simplest primary human cells, lacking nuclei and major organelles and instead employing about a thousand proteins to dynamically control cellular function and morphology in response to physiological cues. In this study, we define a canonical RBC proteome and interactome using quantitative mass spectrometry and machine learning. Our data reveal an RBC interactome dominated by protein homeostasis, redox biology, cytoskeletal dynamics, and carbon metabolism. We validate protein complexes through electron microscopy and chemical crosslinking and, with these data, build 3D structural models of the ankyrin/Band 3/Band 4.2 complex that bridges the spectrin cytoskeleton to the RBC membrane. The model suggests spring-like compression of ankyrin may contribute to the characteristic RBC cell shape and flexibility. Taken together, our study provides an in-depth view of the global protein organization of human RBCs and serves as a comprehensive resource for future research.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Bovine Serum Albumin, pH <5.0, powder
Sigma-Aldrich
Carbonic Anhydrase from bovine erythrocytes, BioReagent, suitable for GFC marker
Sigma-Aldrich
β-Amylase from sweet potato