Skip to Content
Merck
  • A novel potent inhibitor of 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine (PhIP) formation from Chinese chive: Identification, inhibitory effect and action mechanism.

A novel potent inhibitor of 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine (PhIP) formation from Chinese chive: Identification, inhibitory effect and action mechanism.

Food chemistry (2020-12-11)
Qi Wang, Weiwei Cheng, Yifeng Zhang, Qingzheng Kang, Vemana Gowd, Yuanyuan Ren, Feng Chen, Ka-Wing Cheng
ABSTRACT

Differential solvent extraction and phytochemical profiling of Chinse chive were employed to identify its principal PhIP-formation inhibitory constituents. Six compounds (mangiferin, isorhamnetin, luteolin, rosmarinic acid, 6-methylcoumarin, and cyanidin-3-glucoside) were further analyzed in a PhIP-producing chemical model to identify the dominant inhibitor. Its inhibitory mechanism was investigated by assessing the contribution of antioxidation and scavenging of key PhIP precursor/intermediate. No significant correlation was observed between PhIP inhibition rates and antioxidant activities. Further evaluation of the novel potent inhibitor mangiferin revealed a highly significant correlation between its dose-dependent inhibition of PhIP formation and phenylacetaldehyde scavenging. Finally, the proposed mechanism was corroborated through organic synthesis and structural elucidation of the mangiferin-phenylacetaldehyde adduct. This study has identified a potent novel inhibitor of the most abundant HA in heat-processed food and characterized its action mechanism. These findings may provide insight for future studies on mitigation of dietary exposure to toxic Maillard products by polyphenolic phytochemicals.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Butyl methyl ether, 99%
Sigma-Aldrich
(±)-6-Hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid, 97%